ANFIS Post-Processing for Real Time Gait Detection and Classification

Jakub Dabros, M. Iwaniec, M. Patyk, Xavier Sulkowski, Jacek Wesol
{"title":"ANFIS Post-Processing for Real Time Gait Detection and Classification","authors":"Jakub Dabros, M. Iwaniec, M. Patyk, Xavier Sulkowski, Jacek Wesol","doi":"10.1109/HSI.2018.8431095","DOIUrl":null,"url":null,"abstract":"Gait detection and distinction from other movement patterns like descending the stairs is a crucial task for an exoskeleton supporting user movement. Active or quasi-passive exoskeletons should enhance wearer's limbs only in a manner of not interfering with natural gait patterns. Common solutions for this problem are numerous gait detection algorithms that among other sensors use force sensing resistors. In this paper, we propose using an adaptive neuro-fuzzy inference system (ANFIS) classifier that can be trained on a stationary computer and only evaluated in a real time microprocessor control system. What is more, we propose altering the ANFIS outcome with five post-processing algorithms. Each network and algorithm combination is evaluated, results are compared and the best combined classifier is chosen.","PeriodicalId":441117,"journal":{"name":"2018 11th International Conference on Human System Interaction (HSI)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th International Conference on Human System Interaction (HSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI.2018.8431095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gait detection and distinction from other movement patterns like descending the stairs is a crucial task for an exoskeleton supporting user movement. Active or quasi-passive exoskeletons should enhance wearer's limbs only in a manner of not interfering with natural gait patterns. Common solutions for this problem are numerous gait detection algorithms that among other sensors use force sensing resistors. In this paper, we propose using an adaptive neuro-fuzzy inference system (ANFIS) classifier that can be trained on a stationary computer and only evaluated in a real time microprocessor control system. What is more, we propose altering the ANFIS outcome with five post-processing algorithms. Each network and algorithm combination is evaluated, results are compared and the best combined classifier is chosen.
实时步态检测与分类的ANFIS后处理
对于支持用户运动的外骨骼来说,步态检测和区分其他运动模式(如下楼梯)是一项至关重要的任务。主动或准被动外骨骼应该在不干扰自然步态模式的情况下增强佩戴者的四肢。这个问题的常见解决方案是许多步态检测算法,在其他传感器中使用力感应电阻。在本文中,我们建议使用一种自适应神经模糊推理系统(ANFIS)分类器,该分类器可以在固定计算机上训练,并且只能在实时微处理器控制系统中进行评估。此外,我们提出了五种后处理算法来改变ANFIS的结果。对每种网络和算法组合进行了评价,并对结果进行了比较,选择了最佳组合分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信