A Neural Network-Powered Cognitive Method of Identifying Semantic Entities in Earth Science Papers

Xiaoyi Duan, Jia Zhang, R. Ramachandran, P. Gatlin, M. Maskey, Jeffrey J. Miller, K. Bugbee, Tsengdar J. Lee
{"title":"A Neural Network-Powered Cognitive Method of Identifying Semantic Entities in Earth Science Papers","authors":"Xiaoyi Duan, Jia Zhang, R. Ramachandran, P. Gatlin, M. Maskey, Jeffrey J. Miller, K. Bugbee, Tsengdar J. Lee","doi":"10.1109/ICCC.2018.00009","DOIUrl":null,"url":null,"abstract":"In the current era of knowledge explosion, it is becoming increasingly critical to help researchers quickly grasp the core ideas and methods used in the sea of published articles. As a first step toward the aim, this paper proposes a novel approach that simulates the cognitive process of how human beings read Earth science articles, and automatically identifies semantic entities from the articles. Among others, one major objective is to identify the datasets studied in articles. Oftentimes, however, researchers do not explicitly cite the datasets used. Thus, we propose a profile-matching method strengthened by a neural network-based method to identify implicitly cited dataset entities based on the context. Our experiments have demonstrated the effectiveness of our approaches.","PeriodicalId":306012,"journal":{"name":"2018 IEEE International Conference on Cognitive Computing (ICCC)","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Cognitive Computing (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC.2018.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the current era of knowledge explosion, it is becoming increasingly critical to help researchers quickly grasp the core ideas and methods used in the sea of published articles. As a first step toward the aim, this paper proposes a novel approach that simulates the cognitive process of how human beings read Earth science articles, and automatically identifies semantic entities from the articles. Among others, one major objective is to identify the datasets studied in articles. Oftentimes, however, researchers do not explicitly cite the datasets used. Thus, we propose a profile-matching method strengthened by a neural network-based method to identify implicitly cited dataset entities based on the context. Our experiments have demonstrated the effectiveness of our approaches.
基于神经网络的地球科学论文语义实体识别认知方法
在当今知识爆炸的时代,帮助研究人员快速掌握海量已发表文章中使用的核心思想和方法变得越来越重要。作为实现这一目标的第一步,本文提出了一种新的方法,模拟人类阅读地球科学文章的认知过程,并从文章中自动识别语义实体。其中一个主要目标是识别文章中研究的数据集。然而,研究人员通常不会明确引用所使用的数据集。因此,我们提出了一种轮廓匹配方法,通过基于神经网络的方法来识别基于上下文的隐式引用数据集实体。我们的实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信