Learning human actions with an adaptive codebook

Yu Kong, Xiaoqin Zhang, Weiming Hu, Yunde Jia
{"title":"Learning human actions with an adaptive codebook","authors":"Yu Kong, Xiaoqin Zhang, Weiming Hu, Yunde Jia","doi":"10.1109/VSMM.2010.5665971","DOIUrl":null,"url":null,"abstract":"Learning a compact and yet discriminative codebook for classifying human actions is a challenging problem. One difficulty lies in that the learning procedure is split into two independent phases (dimension reduction and clustering) and thus results in the loss of discriminative information which clustering requires. Besides, traditional used principal component analysis is not optimized for class separability and may not help to improve data separation. In this paper, we propose a novel optimization framework which unifies dimension reduction and clustering. In contrast to previous methods, our method enables to dynamically select indispensable and crucial dimensions for building a discriminative codebook. We add metric learning before clustering to provide the clustering method with an optimized distance metric. Experimental results show that our approach constructs a highly discriminative codebook and achieves comparable results to other state-of-the-art approaches.","PeriodicalId":348792,"journal":{"name":"2010 16th International Conference on Virtual Systems and Multimedia","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 16th International Conference on Virtual Systems and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSMM.2010.5665971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learning a compact and yet discriminative codebook for classifying human actions is a challenging problem. One difficulty lies in that the learning procedure is split into two independent phases (dimension reduction and clustering) and thus results in the loss of discriminative information which clustering requires. Besides, traditional used principal component analysis is not optimized for class separability and may not help to improve data separation. In this paper, we propose a novel optimization framework which unifies dimension reduction and clustering. In contrast to previous methods, our method enables to dynamically select indispensable and crucial dimensions for building a discriminative codebook. We add metric learning before clustering to provide the clustering method with an optimized distance metric. Experimental results show that our approach constructs a highly discriminative codebook and achieves comparable results to other state-of-the-art approaches.
用自适应密码本学习人类行为
学习一个紧凑而又具有判别性的代码本来对人类行为进行分类是一个具有挑战性的问题。一个困难在于学习过程分为两个独立的阶段(降维和聚类),从而导致聚类所需的判别信息丢失。此外,传统的主成分分析没有针对类的可分离性进行优化,可能无助于提高数据的可分离性。本文提出了一种将降维与聚类相结合的优化框架。与以前的方法相比,我们的方法能够动态地选择必要的和关键的维度来构建一个判别码本。我们在聚类前加入度量学习,为聚类方法提供一个优化的距离度量。实验结果表明,我们的方法构建了一个高度判别的码本,并取得了与其他先进方法相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信