{"title":"Cross-Borehole ERT: Sensitivity, Model Resolution, and Field Data Quality","authors":"L. M. Madsen, A. Kühl, L. Levy, A. Christiansen","doi":"10.3997/2214-4609.202120114","DOIUrl":null,"url":null,"abstract":"Summary Sensitivity, resolution, and data quality are important parameters to consider when designing an ERT cross-borehole survey. We present an open-source algorithm for computing 2D and 3D sensitivity patterns of any borehole setup and use this to compare single-borehole and different cross-borehole electrode configurations, which both show complex patterns. To study the resolution capability of an entire survey, the model resolution matrix is computed for a field dataset. The dataset is split into different electrode configurations and the model resolution matrices of the different configuration are compared. The results show that the sensitivity and resolution decreases very quickly away from the electrodes, especially for the single-borehole configurations. In the studied field case, this means cross-borehole configurations are needed to correctly image the area between the boreholes, even though the cross-borehole data often are associated with a lower signal-to-noise ratio due to near-zero potential measurements and generally more outliers. The study concludes that in a production mode, where acquisition time and thus the number of possible data points are limited, the combination of electrode configurations must be carefully considered and a trade-off between resolution and data quality must be evaluated.","PeriodicalId":120362,"journal":{"name":"NSG2021 27th European Meeting of Environmental and Engineering Geophysics","volume":"53 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NSG2021 27th European Meeting of Environmental and Engineering Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202120114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Summary Sensitivity, resolution, and data quality are important parameters to consider when designing an ERT cross-borehole survey. We present an open-source algorithm for computing 2D and 3D sensitivity patterns of any borehole setup and use this to compare single-borehole and different cross-borehole electrode configurations, which both show complex patterns. To study the resolution capability of an entire survey, the model resolution matrix is computed for a field dataset. The dataset is split into different electrode configurations and the model resolution matrices of the different configuration are compared. The results show that the sensitivity and resolution decreases very quickly away from the electrodes, especially for the single-borehole configurations. In the studied field case, this means cross-borehole configurations are needed to correctly image the area between the boreholes, even though the cross-borehole data often are associated with a lower signal-to-noise ratio due to near-zero potential measurements and generally more outliers. The study concludes that in a production mode, where acquisition time and thus the number of possible data points are limited, the combination of electrode configurations must be carefully considered and a trade-off between resolution and data quality must be evaluated.