Weighted least squares and iteratively reweighted least squares comparison using Particle Swarm Optimization algorithm in solving power system state estimation

D. H. Tungadio, B. Numbi, W. Siti, J. Jordaan
{"title":"Weighted least squares and iteratively reweighted least squares comparison using Particle Swarm Optimization algorithm in solving power system state estimation","authors":"D. H. Tungadio, B. Numbi, W. Siti, J. Jordaan","doi":"10.1109/AFRCON.2013.6757730","DOIUrl":null,"url":null,"abstract":"Measurements from the electrical network are generally transmitted towards the control centres using special communication links. These measurements allow determining the state of the network in real time. However, these measurements often contain uncertainties due to the meter and communication errors, incomplete metering or unavailability of some of these measurements, etc. This paper presents the application of the Particle Swarm Optimization (PSO) algorithm in minimizing the raw measurement errors in order to identify or estimate the optimal operating state of the power system. Two different objective function formulations are assessed by PSO. The first formulation is the Weighted Least Square (WLS) and the second one is the Iteratively Reweighted Least Squares (IRLS) implementation of the Weighted Least Absolute Value (WLAV). Both solutions are compared with a Newton-Raphson (NR) power flow solution using an IEEE 6-bus test system.","PeriodicalId":159306,"journal":{"name":"2013 Africon","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Africon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFRCON.2013.6757730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Measurements from the electrical network are generally transmitted towards the control centres using special communication links. These measurements allow determining the state of the network in real time. However, these measurements often contain uncertainties due to the meter and communication errors, incomplete metering or unavailability of some of these measurements, etc. This paper presents the application of the Particle Swarm Optimization (PSO) algorithm in minimizing the raw measurement errors in order to identify or estimate the optimal operating state of the power system. Two different objective function formulations are assessed by PSO. The first formulation is the Weighted Least Square (WLS) and the second one is the Iteratively Reweighted Least Squares (IRLS) implementation of the Weighted Least Absolute Value (WLAV). Both solutions are compared with a Newton-Raphson (NR) power flow solution using an IEEE 6-bus test system.
基于粒子群优化算法的加权最小二乘与迭代再加权最小二乘比较求解电力系统状态估计
来自电网的测量数据通常通过特殊的通信链路传输到控制中心。这些测量可以实时确定网络的状态。然而,由于仪表和通信错误、计量不完整或其中一些测量不可用等原因,这些测量通常包含不确定性。提出了利用粒子群优化算法最小化原始测量误差,以辨识或估计电力系统最优运行状态的方法。采用粒子群算法对两种不同的目标函数公式进行了评价。第一种是加权最小二乘(WLS),第二种是加权最小绝对值(WLAV)的迭代重加权最小二乘(IRLS)实现。采用IEEE 6总线测试系统,将两种方案与牛顿-拉夫森(NR)潮流方案进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信