System Identification for Internal Combustion Engine Model

T. Kamaruddin, I. Darus
{"title":"System Identification for Internal Combustion Engine Model","authors":"T. Kamaruddin, I. Darus","doi":"10.1109/AMS.2012.13","DOIUrl":null,"url":null,"abstract":"A parametric and non-parametric identification of internal combustion engine (ICE) model using recursive least squares (RLS) and neuro-fuzzy modeling (ANFIS) approach are introduced in this paper. The analytical model of an internal combustion engine is excited by pseudorandom binary sequence (PRBS) input which gives random signals to make sure the information of the system covers large range of frequencies. The input and output data obtained from the simulation of the analytical model is used for the identification of the system. The simplest polynomial form, auto-regressive, external input (ARX) model structure is chosen and the performance of the system is validated by mean square error (MSE) and correlation tests. Although, both methods capable to represent the dynamic of the system very well, it is demonstrated that ANFIS gives better results than RLS in terms of mean squares error between actual and prediction.","PeriodicalId":407900,"journal":{"name":"2012 Sixth Asia Modelling Symposium","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Sixth Asia Modelling Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2012.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A parametric and non-parametric identification of internal combustion engine (ICE) model using recursive least squares (RLS) and neuro-fuzzy modeling (ANFIS) approach are introduced in this paper. The analytical model of an internal combustion engine is excited by pseudorandom binary sequence (PRBS) input which gives random signals to make sure the information of the system covers large range of frequencies. The input and output data obtained from the simulation of the analytical model is used for the identification of the system. The simplest polynomial form, auto-regressive, external input (ARX) model structure is chosen and the performance of the system is validated by mean square error (MSE) and correlation tests. Although, both methods capable to represent the dynamic of the system very well, it is demonstrated that ANFIS gives better results than RLS in terms of mean squares error between actual and prediction.
内燃机模型系统辨识
介绍了一种基于递推最小二乘和神经模糊建模的内燃机模型参数和非参数辨识方法。内燃机解析模型采用伪随机二值序列(PRBS)输入激励,以保证系统的信息覆盖较大的频率范围。分析模型仿真得到的输入输出数据用于系统的识别。选择了最简单的多项式形式,自回归的外部输入(ARX)模型结构,并通过均方误差(MSE)和相关检验验证了系统的性能。虽然这两种方法都能很好地表示系统的动态,但从实际和预测的均方误差来看,ANFIS比RLS给出了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信