Query Execution for RDF Data Using Structure Indexed Vertical Partitioning

Bhavik Shah, Trupti Padiya, Minal Bhise
{"title":"Query Execution for RDF Data Using Structure Indexed Vertical Partitioning","authors":"Bhavik Shah, Trupti Padiya, Minal Bhise","doi":"10.1109/IPDPSW.2015.143","DOIUrl":null,"url":null,"abstract":"The paper explores use of various partitioning methods to store RDF data effectively, to meet the needs of extensively growing highly interactive semantic web applications. It proposes a combinational approach of structure index partitioning and vertical partitioning - SIVP and demonstrates the implementation of SIVP. The paper presents five metrics to measure and analyze performance of SIVP store. SIVP is experimented on FOAF and SwetoDBLP datasets. SIVP store have shown an average of 34% gain over vertical partitioning for FOAF dataset. For SwetoDBLP dataset, SIVP have shown an average of 26% gain over VP. SIVP is better than vertical partitioning provided extra time needed in SIVP, which consists of lookup time and merge time, is compensated by frequency of a query higher than breakeven point for that query.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The paper explores use of various partitioning methods to store RDF data effectively, to meet the needs of extensively growing highly interactive semantic web applications. It proposes a combinational approach of structure index partitioning and vertical partitioning - SIVP and demonstrates the implementation of SIVP. The paper presents five metrics to measure and analyze performance of SIVP store. SIVP is experimented on FOAF and SwetoDBLP datasets. SIVP store have shown an average of 34% gain over vertical partitioning for FOAF dataset. For SwetoDBLP dataset, SIVP have shown an average of 26% gain over VP. SIVP is better than vertical partitioning provided extra time needed in SIVP, which consists of lookup time and merge time, is compensated by frequency of a query higher than breakeven point for that query.
使用结构索引垂直分区执行 RDF 数据查询
本文探讨了如何使用各种分区方法来有效存储 RDF 数据,以满足广泛增长的高度交互式语义网络应用的需求。它提出了一种结构索引分区和垂直分区的组合方法--SIVP,并演示了 SIVP 的实现。论文提出了衡量和分析 SIVP 存储性能的五个指标。SIVP 在 FOAF 和 SwetoDBLP 数据集上进行了实验。在 FOAF 数据集上,SIVP 存储比垂直分区平均增益 34%。在 SwetoDBLP 数据集上,SIVP 平均比 VP 提高了 26%。SIVP 优于垂直分区,前提是 SIVP 所需的额外时间(包括查找时间和合并时间)可以通过查询频率高于该查询的盈亏平衡点来补偿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信