Learning Word Representations with Deep Neural Networks for Turkish

E. Dündar, Ethem Alpaydin
{"title":"Learning Word Representations with Deep Neural Networks for Turkish","authors":"E. Dündar, Ethem Alpaydin","doi":"10.1109/SIU.2019.8806491","DOIUrl":null,"url":null,"abstract":"We test different word embedding methods in Turkish. The goal is to represent related words in a high dimensional space such that their positions reflect this relationship. We compare word2vec, fastText, and ELMo on three Turkish corpora of different sizes. Word2vec works at the word level, fastText works at the character level; ELMo, unlike the other two, is context dependent. Our experiments show that fastText is better on name and verb inflection, and word2vec is better on semantic/syntactic analogy tasks. Bag-of-words model is better than most trained word embedding models on classification.","PeriodicalId":326275,"journal":{"name":"2019 27th Signal Processing and Communications Applications Conference (SIU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2019.8806491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We test different word embedding methods in Turkish. The goal is to represent related words in a high dimensional space such that their positions reflect this relationship. We compare word2vec, fastText, and ELMo on three Turkish corpora of different sizes. Word2vec works at the word level, fastText works at the character level; ELMo, unlike the other two, is context dependent. Our experiments show that fastText is better on name and verb inflection, and word2vec is better on semantic/syntactic analogy tasks. Bag-of-words model is better than most trained word embedding models on classification.
用深度神经网络学习土耳其语单词表示
我们测试了土耳其语中不同的词嵌入方法。目标是在高维空间中表示相关的单词,以便它们的位置反映这种关系。我们在三个不同大小的土耳其语料库上比较了word2vec、fastText和ELMo。Word2vec工作在单词级别,fastText工作在字符级别;与其他两个不同,ELMo依赖于上下文。我们的实验表明,fastText在名称和动词屈变上表现更好,而word2vec在语义/句法类比任务上表现更好。词袋模型在分类上优于大多数训练好的词嵌入模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信