Effect of Strain on Quantum Capacitance of Two Dimensional Intrinsic Graphene

A. Mondal, B. Maiti, Anup Dey
{"title":"Effect of Strain on Quantum Capacitance of Two Dimensional Intrinsic Graphene","authors":"A. Mondal, B. Maiti, Anup Dey","doi":"10.1109/EDKCON.2018.8770443","DOIUrl":null,"url":null,"abstract":"In this article, effect of strain on quantum capacitance of 2D intrinsic graphene has been investigated and the theoretical basis of its evolution has been formulated. The variation of quantum capacitance with applied strain has extensively been studied. It is observed that quantum capacitance not only depends on magnitude of applied strain but also depends on its direction. Under anisotropic strain field, the expression of quantum capacitance is calculated from density of states (DOS) using anisotropic dispersion energy in tight-binding approximation (TBA). This anisotropy in strain field causes accumulation of charge carriers in graphene without external bias and generates energy band gap. The strain-tunable band gap is introduced in the expression of quantum capacitance that would help to control the performance of high speed graphene devices by tuning the band gap applying anisotropic strain and would open up the possibility of designing new kind of graphene based field effect devices with very thin gate dielectric.","PeriodicalId":344143,"journal":{"name":"2018 IEEE Electron Devices Kolkata Conference (EDKCON)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Electron Devices Kolkata Conference (EDKCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDKCON.2018.8770443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, effect of strain on quantum capacitance of 2D intrinsic graphene has been investigated and the theoretical basis of its evolution has been formulated. The variation of quantum capacitance with applied strain has extensively been studied. It is observed that quantum capacitance not only depends on magnitude of applied strain but also depends on its direction. Under anisotropic strain field, the expression of quantum capacitance is calculated from density of states (DOS) using anisotropic dispersion energy in tight-binding approximation (TBA). This anisotropy in strain field causes accumulation of charge carriers in graphene without external bias and generates energy band gap. The strain-tunable band gap is introduced in the expression of quantum capacitance that would help to control the performance of high speed graphene devices by tuning the band gap applying anisotropic strain and would open up the possibility of designing new kind of graphene based field effect devices with very thin gate dielectric.
应变对二维本征石墨烯量子电容的影响
本文研究了应变对二维本征石墨烯量子电容的影响,并给出了其演化的理论基础。量子电容随外加应变的变化已被广泛研究。观察到,量子电容不仅与外加应变的大小有关,还与外加应变的方向有关。在各向异性应变场下,利用紧束缚近似(TBA)的各向异性色散能从态密度(DOS)计算出量子电容的表达式。这种应变场的各向异性导致无外偏置的石墨烯中载流子聚集,并产生能带隙。在量子电容表达式中引入应变可调带隙,利用各向异性应变调节带隙有助于控制高速石墨烯器件的性能,并为设计极薄栅极介质的新型石墨烯基场效应器件开辟了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信