Michael A. Bauer, Elliott Slaughter, Sean Treichler, Wonchan Lee, M. Garland, A. Aiken
{"title":"Visibility Algorithms for Dynamic Dependence Analysis and Distributed Coherence","authors":"Michael A. Bauer, Elliott Slaughter, Sean Treichler, Wonchan Lee, M. Garland, A. Aiken","doi":"10.1145/3572848.3577515","DOIUrl":null,"url":null,"abstract":"Implicitly parallel programming systems must solve the joint problems of dependence analysis and coherence to ensure apparently-sequential semantics for applications run on distributed memory machines. Solving these problems in the presence of data-dependent control flow and arbitrary aliasing is a challenge that most existing systems eschew by compromising the expressivity of their programming models and/or the performance of their implementations. We demonstrate a general class of solutions to these problems via a reduction to the visibility problem from computer graphics.","PeriodicalId":233744,"journal":{"name":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572848.3577515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Implicitly parallel programming systems must solve the joint problems of dependence analysis and coherence to ensure apparently-sequential semantics for applications run on distributed memory machines. Solving these problems in the presence of data-dependent control flow and arbitrary aliasing is a challenge that most existing systems eschew by compromising the expressivity of their programming models and/or the performance of their implementations. We demonstrate a general class of solutions to these problems via a reduction to the visibility problem from computer graphics.