Characterization of Novel Magnetically Loaded Flocked Carbon Fiber Microwave Absorber

H. Tran, T. Le, B. Pejcinovic, Jeffrey T Brown, R. Doneker, K. G. Thompson
{"title":"Characterization of Novel Magnetically Loaded Flocked Carbon Fiber Microwave Absorber","authors":"H. Tran, T. Le, B. Pejcinovic, Jeffrey T Brown, R. Doneker, K. G. Thompson","doi":"10.1109/EMCSI.2018.8495186","DOIUrl":null,"url":null,"abstract":"The development of a novel microwave absorber material utilizing mm-length carbon fibers (CF) is reported. The CF are deposited electrostatically using the flocking process. Micron-sized ferrite beads are then deposited on tips of carbon fibers. The material is lightweight with density of ~0.32 g/in2and its thickness can vary from one to several millimeters. Its absorption is broadband and tunable with respect to frequency response and amount of absorption. The absorber was characterized in X-band using NRL arch measurement in an anechoic chamber. The material exhibited broadband attenuation ranging from around −10 dB at the edges of X-band to a peak of −46 dB at 11.1 GHz. Absorber complex permittivity and permeability were extracted using waveguide measurements. Electromagnetic simulations utilizing extracted parameters were compared with measured data and good agreement was found. Overall extraction process was successfully verified by comparison with a known commercial absorber material. The absorber performance compares favorably with existing solutions.","PeriodicalId":120342,"journal":{"name":"2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCSI.2018.8495186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The development of a novel microwave absorber material utilizing mm-length carbon fibers (CF) is reported. The CF are deposited electrostatically using the flocking process. Micron-sized ferrite beads are then deposited on tips of carbon fibers. The material is lightweight with density of ~0.32 g/in2and its thickness can vary from one to several millimeters. Its absorption is broadband and tunable with respect to frequency response and amount of absorption. The absorber was characterized in X-band using NRL arch measurement in an anechoic chamber. The material exhibited broadband attenuation ranging from around −10 dB at the edges of X-band to a peak of −46 dB at 11.1 GHz. Absorber complex permittivity and permeability were extracted using waveguide measurements. Electromagnetic simulations utilizing extracted parameters were compared with measured data and good agreement was found. Overall extraction process was successfully verified by comparison with a known commercial absorber material. The absorber performance compares favorably with existing solutions.
新型磁加载蜂群碳纤维微波吸收体的特性研究
报道了一种新型微波吸收材料的研制。CF采用植绒工艺静电沉积。然后将微米大小的铁氧体珠沉积在碳纤维的尖端。该材料重量轻,密度约为0.32 g/in2,厚度可从1毫米到数毫米不等。它的吸收是宽带和可调的频率响应和吸收量。利用消声室的NRL弧度测量在x波段对吸波器进行了表征。该材料的宽带衰减范围从x波段边缘的−10 dB左右到11.1 GHz的−46 dB峰值。利用波导测量提取了吸收体的复介电常数和磁导率。利用提取参数进行的电磁模拟与实测数据进行了比较,结果吻合较好。通过与一种已知的工业吸收材料的比较,成功地验证了整个提取过程。吸收器的性能优于现有的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信