ARM-CPD: Detecting SYN flooding attack by traffic prediction

Sun Qibo, W. Shangguang, Yan Dan-feng, Y. Fangchun
{"title":"ARM-CPD: Detecting SYN flooding attack by traffic prediction","authors":"Sun Qibo, W. Shangguang, Yan Dan-feng, Y. Fangchun","doi":"10.1109/ICBNMT.2009.5348532","DOIUrl":null,"url":null,"abstract":"This paper proposed an ARM-CPD scheme that is a simple but fast and effective approach to detect SYN flooding attacks. Instead of managing all real time ongoing traffic on the network, ARM-CPD only monitors the SYN packet and use it to predict the SYN packet in the near future to detect the SYN flooding attacks. To get the prediction SYN traffic, the Autoregressive Integrated Moving Average Model (ARIMA) is proposed; and to make the detection method insensitive to site and access pattern, a non-parametric Cumulative Sum (CUSUM) algorithm is applied. The trace-driven simulations demonstrate that ARM-CPD can shorten the detection time of SYN flooding attack effectively.","PeriodicalId":267128,"journal":{"name":"2009 2nd IEEE International Conference on Broadband Network & Multimedia Technology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd IEEE International Conference on Broadband Network & Multimedia Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBNMT.2009.5348532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposed an ARM-CPD scheme that is a simple but fast and effective approach to detect SYN flooding attacks. Instead of managing all real time ongoing traffic on the network, ARM-CPD only monitors the SYN packet and use it to predict the SYN packet in the near future to detect the SYN flooding attacks. To get the prediction SYN traffic, the Autoregressive Integrated Moving Average Model (ARIMA) is proposed; and to make the detection method insensitive to site and access pattern, a non-parametric Cumulative Sum (CUSUM) algorithm is applied. The trace-driven simulations demonstrate that ARM-CPD can shorten the detection time of SYN flooding attack effectively.
ARM-CPD:通过流量预测检测SYN flood攻击
本文提出了一种简单、快速、有效的SYN泛洪攻击检测方法ARM-CPD方案。ARM-CPD不管理网络上所有实时的正在进行的流量,而是只监控SYN包,并利用它来预测SYN包在不久的将来会发生什么,从而检测SYN泛洪攻击。为了对SYN流量进行预测,提出了自回归综合移动平均模型(ARIMA);为了使检测方法对站点和访问方式不敏感,采用了非参数累积和(CUSUM)算法。跟踪驱动仿真结果表明,ARM-CPD可以有效缩短SYN泛洪攻击的检测时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信