A new online clustering approach for data in arbitrary shaped clusters

Richard Hyde, P. Angelov
{"title":"A new online clustering approach for data in arbitrary shaped clusters","authors":"Richard Hyde, P. Angelov","doi":"10.1109/CYBConf.2015.7175937","DOIUrl":null,"url":null,"abstract":"In this paper we demonstrate a new density based clustering technique, CODSAS, for online clustering of streaming data into arbitrary shaped clusters. CODAS is a two stage process using a simple local density to initiate micro-clusters which are then combined into clusters. Memory efficiency is gained by not storing or re-using any data. Computational efficiency is gained by using hyper-spherical micro-clusters to achieve a micro-cluster joining technique that is dimensionally independent for speed. The micro-clusters divide the data space in to sub-spaces with a core region and a non-core region. Core regions which intersect define the clusters. A threshold value is used to identify outlier micro-clusters separately from small clusters of unusual data. The cluster information is fully maintained on-line. In this paper we compare CODAS with ELM, DEC, Chameleon, DBScan and Denstream and demonstrate that CODAS achieves comparable results but in a fully on-line and dimensionally scale-able manner.","PeriodicalId":177233,"journal":{"name":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","volume":"51 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBConf.2015.7175937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper we demonstrate a new density based clustering technique, CODSAS, for online clustering of streaming data into arbitrary shaped clusters. CODAS is a two stage process using a simple local density to initiate micro-clusters which are then combined into clusters. Memory efficiency is gained by not storing or re-using any data. Computational efficiency is gained by using hyper-spherical micro-clusters to achieve a micro-cluster joining technique that is dimensionally independent for speed. The micro-clusters divide the data space in to sub-spaces with a core region and a non-core region. Core regions which intersect define the clusters. A threshold value is used to identify outlier micro-clusters separately from small clusters of unusual data. The cluster information is fully maintained on-line. In this paper we compare CODAS with ELM, DEC, Chameleon, DBScan and Denstream and demonstrate that CODAS achieves comparable results but in a fully on-line and dimensionally scale-able manner.
一种新的任意形状聚类数据在线聚类方法
本文展示了一种新的基于密度的聚类技术,CODSAS,用于将流数据在线聚类成任意形状的聚类。CODAS是一个两阶段的过程,使用简单的局部密度来启动微集群,然后将微集群组合成集群。内存效率是通过不存储或重用任何数据获得的。利用超球面微团簇实现了与速度无关的微团簇连接技术,提高了计算效率。微集群将数据空间划分为具有核心区和非核心区的子空间。相交的核心区域定义了集群。阈值用于将异常数据的小簇与异常数据的小簇分开识别。集群信息完全在线维护。在本文中,我们将CODAS与ELM, DEC, Chameleon, DBScan和Denstream进行了比较,并证明CODAS在完全在线和维度可扩展的方式下取得了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信