Latent process model for manifold learning

G. Wang, Weifeng Su, Xiangye Xiao, F. Lochovsky
{"title":"Latent process model for manifold learning","authors":"G. Wang, Weifeng Su, Xiangye Xiao, F. Lochovsky","doi":"10.1109/ICTAI.2005.79","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel stochastic framework for unsupervised manifold learning. The latent variables are introduced, and the latent processes are assumed to characterize the pairwise relations of points over a high dimensional and a low dimensional space. The elements in the embedding space are obtained by minimizing the divergence between the latent processes over the two spaces. Different priors of the latent variables, such as Gaussian and multinominal, are examined. The Kullback-Leibler divergence and the Bhattachartyya distance are investigated. The latent process model incorporates some existing embedding methods and gives a clear view on the properties of each method. The embedding ability of this latent process model is illustrated on a collection of bitmaps of handwritten digits and on a set of synthetic data","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel stochastic framework for unsupervised manifold learning. The latent variables are introduced, and the latent processes are assumed to characterize the pairwise relations of points over a high dimensional and a low dimensional space. The elements in the embedding space are obtained by minimizing the divergence between the latent processes over the two spaces. Different priors of the latent variables, such as Gaussian and multinominal, are examined. The Kullback-Leibler divergence and the Bhattachartyya distance are investigated. The latent process model incorporates some existing embedding methods and gives a clear view on the properties of each method. The embedding ability of this latent process model is illustrated on a collection of bitmaps of handwritten digits and on a set of synthetic data
流形学习的潜在过程模型
本文提出了一种新的无监督流形学习随机框架。引入潜在变量,并假设潜在过程表征高维和低维空间上点的成对关系。嵌入空间中的元素是通过最小化两个空间上潜在过程之间的散度来获得的。不同的先验的潜在变量,如高斯和多项,进行了检查。研究了Kullback-Leibler散度和Bhattachartyya距离。潜在过程模型结合了现有的几种嵌入方法,并对每种方法的性质给出了清晰的认识。在一组手写数字位图和一组合成数据上说明了该隐过程模型的嵌入能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信