Real-time visual loop-closure detection

Adrien Angeli, S. Doncieux, Jean-Arcady Meyer, David Filliat
{"title":"Real-time visual loop-closure detection","authors":"Adrien Angeli, S. Doncieux, Jean-Arcady Meyer, David Filliat","doi":"10.1109/ROBOT.2008.4543475","DOIUrl":null,"url":null,"abstract":"In robotic applications of visual simultaneous localization and mapping, loop-closure detection and global localization are two issues that require the capacity to recognize a previously visited place from current camera measurements. We present an online method that makes it possible to detect when an image comes from an already perceived scene using local shape information. Our approach extends the bag of visual words method used in image recognition to incremental conditions and relies on Bayesian filtering to estimate loop-closure probability. We demonstrate the efficiency of our solution by real-time loop-closure detection under strong perceptual aliasing conditions in an indoor image sequence taken with a handheld camera.","PeriodicalId":351230,"journal":{"name":"2008 IEEE International Conference on Robotics and Automation","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2008.4543475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 113

Abstract

In robotic applications of visual simultaneous localization and mapping, loop-closure detection and global localization are two issues that require the capacity to recognize a previously visited place from current camera measurements. We present an online method that makes it possible to detect when an image comes from an already perceived scene using local shape information. Our approach extends the bag of visual words method used in image recognition to incremental conditions and relies on Bayesian filtering to estimate loop-closure probability. We demonstrate the efficiency of our solution by real-time loop-closure detection under strong perceptual aliasing conditions in an indoor image sequence taken with a handheld camera.
实时视觉闭环检测
在机器人视觉同步定位和测绘应用中,闭环检测和全局定位是两个需要从当前相机测量中识别以前访问过的地方的能力的问题。我们提出了一种在线方法,可以使用局部形状信息检测图像何时来自已感知的场景。我们的方法将图像识别中使用的视觉词袋方法扩展到增量条件,并依赖于贝叶斯滤波来估计闭环概率。我们通过使用手持相机拍摄的室内图像序列在强感知混叠条件下的实时闭环检测来证明我们的解决方案的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信