Driver’s Illegal Driving Behavior Detection with SSD Approach

Tao Yang, Jin Yang, Jicheng Meng
{"title":"Driver’s Illegal Driving Behavior Detection with SSD Approach","authors":"Tao Yang, Jin Yang, Jicheng Meng","doi":"10.1109/PRML52754.2021.9520735","DOIUrl":null,"url":null,"abstract":"In this paper, an advanced detection approach of illegal driving behavior is proposed using Single Shot MultiBox Detector (SSD) based on deep learning. The detection of driver’s illegal driving behavior includes cellphone usage, cigarette smoke and no fastening seat belt. Doing this can greatly reduce the occurrence of traffic accidents. In order to validate the detection effect using SSD on small target objects, such as cigarette in complex environment, we use not only three online databases, i.e. HMDB human motion database, WIDER FACE Database, Hollywood-2 Database, but also a real database collected by ourselves. The experimental results show that the SSD approach has a better performance than the Faster Regions with Convolutional Neural Network (Faster R-CNN) for detecting driver’s illegal driving behavior.","PeriodicalId":429603,"journal":{"name":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRML52754.2021.9520735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an advanced detection approach of illegal driving behavior is proposed using Single Shot MultiBox Detector (SSD) based on deep learning. The detection of driver’s illegal driving behavior includes cellphone usage, cigarette smoke and no fastening seat belt. Doing this can greatly reduce the occurrence of traffic accidents. In order to validate the detection effect using SSD on small target objects, such as cigarette in complex environment, we use not only three online databases, i.e. HMDB human motion database, WIDER FACE Database, Hollywood-2 Database, but also a real database collected by ourselves. The experimental results show that the SSD approach has a better performance than the Faster Regions with Convolutional Neural Network (Faster R-CNN) for detecting driver’s illegal driving behavior.
基于SSD方法的驾驶员非法驾驶行为检测
本文提出了一种基于深度学习的单镜头多盒检测器(Single Shot MultiBox Detector, SSD)的高级违章驾驶行为检测方法。对驾驶员非法驾驶行为的检测包括使用手机、吸烟和未系安全带。这样做可以大大减少交通事故的发生。为了验证SSD在复杂环境下对香烟等小目标物体的检测效果,我们不仅使用了HMDB人体运动数据库、WIDER FACE数据库、Hollywood-2数据库这三个在线数据库,而且还使用了我们自己采集的真实数据库。实验结果表明,SSD方法在检测驾驶员违章驾驶行为方面比Faster - R-CNN方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信