A density-based recursive RANSAC algorithm for unmanned aerial vehicle multi-target tracking in dense clutter

Feng Yang, Weikang Tang, Hua Lan
{"title":"A density-based recursive RANSAC algorithm for unmanned aerial vehicle multi-target tracking in dense clutter","authors":"Feng Yang, Weikang Tang, Hua Lan","doi":"10.1109/ICCA.2017.8003029","DOIUrl":null,"url":null,"abstract":"Target tracking is a hot topic for unmanned aerial vehicle surveillance. Recently, the novel random sample consensus (RANSAC) algorithm shows a good tracking performance in dense clutter environment. However, the heavy computational burden limits the usage for unmanned aerial vehicle (UAV). In this paper, a density-based recursive random sample consensus (DBR-RANSAC) algorithm is proposed, which utilizes the density property of measurements within several steps to direct sampling. In the DBR-RANSAC, the randomness of sampling can be avoided and the computation complexity can be reduced particularly in dense clutter. The simulation results show the validity of the proposed algorithm.","PeriodicalId":379025,"journal":{"name":"2017 13th IEEE International Conference on Control & Automation (ICCA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE International Conference on Control & Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2017.8003029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Target tracking is a hot topic for unmanned aerial vehicle surveillance. Recently, the novel random sample consensus (RANSAC) algorithm shows a good tracking performance in dense clutter environment. However, the heavy computational burden limits the usage for unmanned aerial vehicle (UAV). In this paper, a density-based recursive random sample consensus (DBR-RANSAC) algorithm is proposed, which utilizes the density property of measurements within several steps to direct sampling. In the DBR-RANSAC, the randomness of sampling can be avoided and the computation complexity can be reduced particularly in dense clutter. The simulation results show the validity of the proposed algorithm.
稠密杂波下无人机多目标跟踪的基于密度的递归RANSAC算法
目标跟踪是无人机监控领域的研究热点。近年来,随机样本一致性(RANSAC)算法在密集杂波环境下显示出良好的跟踪性能。然而,巨大的计算负担限制了无人机的使用。本文提出了一种基于密度的递归随机样本一致性(DBR-RANSAC)算法,该算法利用多步测量的密度特性直接抽样。在DBR-RANSAC中,可以避免采样的随机性,特别是在密集杂波情况下,可以降低计算复杂度。仿真结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信