Comparative analysis on Emotion Recognition by Multi-Channel CapsNet Learning Framework

D. Vinod Kumar
{"title":"Comparative analysis on Emotion Recognition by Multi-Channel CapsNet Learning Framework","authors":"D. Vinod Kumar","doi":"10.36548/jaicn.2022.2.003","DOIUrl":null,"url":null,"abstract":"This study uses electroencephalography (EEG) data to construct an emotion identification system utilizing a deep learning model. Modeling numerous data inputs from many sources, such as physiological signals, environmental data and video clips has become more important in the field of emotion detection. A variety of classic machine learning methods have been used to capture the richness of multimodal data at the sensor and feature levels for the categorization of human emotion. The proposed framework is constructed by combining the multi-channel EEG signals' frequency domain, spatial properties, and frequency band parameters. The CapsNet model is then used to identify emotional states based on the input given in the first stage of the proposed work. It has been shown that the suggested technique outperforms the most commonly used models in the DEAP dataset for the analysis of emotion through output of EEG signal, functional and visual inputs. The model's efficiency is determined by looking at its performance indicators.","PeriodicalId":399652,"journal":{"name":"Journal of Artificial Intelligence and Capsule Networks","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Capsule Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jaicn.2022.2.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study uses electroencephalography (EEG) data to construct an emotion identification system utilizing a deep learning model. Modeling numerous data inputs from many sources, such as physiological signals, environmental data and video clips has become more important in the field of emotion detection. A variety of classic machine learning methods have been used to capture the richness of multimodal data at the sensor and feature levels for the categorization of human emotion. The proposed framework is constructed by combining the multi-channel EEG signals' frequency domain, spatial properties, and frequency band parameters. The CapsNet model is then used to identify emotional states based on the input given in the first stage of the proposed work. It has been shown that the suggested technique outperforms the most commonly used models in the DEAP dataset for the analysis of emotion through output of EEG signal, functional and visual inputs. The model's efficiency is determined by looking at its performance indicators.
基于多通道CapsNet学习框架的情绪识别比较分析
本研究利用脑电图(EEG)数据,利用深度学习模型构建情绪识别系统。对来自多种来源的大量数据输入进行建模,如生理信号、环境数据和视频片段,在情绪检测领域变得越来越重要。各种经典的机器学习方法已被用于在传感器和特征级别捕获丰富的多模态数据,用于对人类情感进行分类。该框架结合多通道脑电信号的频域、空间特性和频带参数构建。然后使用CapsNet模型根据在建议工作的第一阶段给出的输入来识别情绪状态。研究表明,该技术优于DEAP数据集中最常用的模型,可以通过输出EEG信号、功能和视觉输入来分析情绪。该模型的效率是通过查看其性能指标来确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信