A Fast Gradient Boosting Based Approach for Predicting Frags in Tactic Games

Haitao Xiao, Jinzhong Yang, Yuling Liu, Junrong Liu, D. Du, Zhigang Lu
{"title":"A Fast Gradient Boosting Based Approach for Predicting Frags in Tactic Games","authors":"Haitao Xiao, Jinzhong Yang, Yuling Liu, Junrong Liu, D. Du, Zhigang Lu","doi":"10.1109/ICMEW59549.2023.00007","DOIUrl":null,"url":null,"abstract":"Predicting the probability of scoring a frag in a tactical video game is a challenging task. It is hard for humans to evaluate the real-time game situation and predict whether a player can score in his/her turn. In this paper, we present a fast gradient boosting based approach to this problem consisting of data analysis, feature engineering, and model construction. Firstly, we analyze the game data and identify the key factors that influence the probability of frag scoring. Then, we extract relevant features from game states metadata and map metadata in the feature engineering stage. Finally, we train and predict the probability of scoring a frag using a gradient boosting based method. Our proposed approach achieves an AUC score of 0.8008 on the whole test set, and only takes 156 seconds for 10-fold cross-validation, demonstrating its effectiveness and efficiency.","PeriodicalId":111482,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW59549.2023.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the probability of scoring a frag in a tactical video game is a challenging task. It is hard for humans to evaluate the real-time game situation and predict whether a player can score in his/her turn. In this paper, we present a fast gradient boosting based approach to this problem consisting of data analysis, feature engineering, and model construction. Firstly, we analyze the game data and identify the key factors that influence the probability of frag scoring. Then, we extract relevant features from game states metadata and map metadata in the feature engineering stage. Finally, we train and predict the probability of scoring a frag using a gradient boosting based method. Our proposed approach achieves an AUC score of 0.8008 on the whole test set, and only takes 156 seconds for 10-fold cross-validation, demonstrating its effectiveness and efficiency.
一种基于快速梯度增强的战术博弈中碎片预测方法
在战术电子游戏中预测得分的概率是一项具有挑战性的任务。人类很难评估实时游戏情况,并预测玩家是否能在他/她的回合中得分。在本文中,我们提出了一种基于快速梯度增强的方法来解决这个问题,该方法包括数据分析、特征工程和模型构建。首先对比赛数据进行分析,找出影响碎片得分概率的关键因素;然后,在特征工程阶段,从游戏状态元数据和地图元数据中提取相关特征。最后,我们使用基于梯度增强的方法来训练和预测碎片得分的概率。我们提出的方法在整个测试集上的AUC得分为0.8008,10次交叉验证只需要156秒,证明了它的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信