Traffic Prediction for Wireless Cellular System Based on Shrinkage Estimation

Xueli Wang, Yufeng Zhang, Xing Zhang, Wenbo Wang
{"title":"Traffic Prediction for Wireless Cellular System Based on Shrinkage Estimation","authors":"Xueli Wang, Yufeng Zhang, Xing Zhang, Wenbo Wang","doi":"10.1109/IICSPI48186.2019.9095939","DOIUrl":null,"url":null,"abstract":"In this paper, a traffic model is proposed based on shrinkage estimation with link load traffic data generated from the wireless cellular system. Compared with the traditional method, the spatiotemporal properties of different base stations (BSes) are considered, and a shrinkage estimation method Random Lasso is used to make variables selection, and to estimate the parameters of selected variables. The results show that the characteristics of traffic for the entire wireless cellular system can be captured effectively, and the prediction accuracy improves significantly. Besides, our research could be extended to other fields of spatiotemporal analysis with multivariate time series.","PeriodicalId":318693,"journal":{"name":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI48186.2019.9095939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a traffic model is proposed based on shrinkage estimation with link load traffic data generated from the wireless cellular system. Compared with the traditional method, the spatiotemporal properties of different base stations (BSes) are considered, and a shrinkage estimation method Random Lasso is used to make variables selection, and to estimate the parameters of selected variables. The results show that the characteristics of traffic for the entire wireless cellular system can be captured effectively, and the prediction accuracy improves significantly. Besides, our research could be extended to other fields of spatiotemporal analysis with multivariate time series.
基于收缩估计的无线蜂窝系统流量预测
本文利用无线蜂窝系统产生的链路负载流量数据,提出了一种基于收缩估计的流量模型。与传统方法相比,该方法考虑了不同基站的时空特性,采用收缩估计方法Random Lasso进行变量选择,并对所选变量的参数进行估计。结果表明,该方法能够有效地捕获整个无线蜂窝系统的业务特征,预测精度显著提高。此外,我们的研究可以扩展到其他多变量时间序列的时空分析领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信