Optimized Conversion of Categorical and Numerical Features in Machine Learning Models

K. P. N. V. Satya Sree, J. Karthik, Chava Niharika, P. Srinivas, N. Ravinder, Chitturi Prasad
{"title":"Optimized Conversion of Categorical and Numerical Features in Machine Learning Models","authors":"K. P. N. V. Satya Sree, J. Karthik, Chava Niharika, P. Srinivas, N. Ravinder, Chitturi Prasad","doi":"10.1109/I-SMAC52330.2021.9640967","DOIUrl":null,"url":null,"abstract":"While some data have an explicit, numerical form, many other data, such as gender or nationality, do not typically use numbers and are referred to as categorical data. Thus, machine learning algorithms need a way of representing categorical information numerically in order to be able to analyze them. Our project specifically focuses on optimizing the conversion of categorical features to a numerical form in order to maximize the effectiveness of various machine learning models. From the methods utilized, it has been observed that wide and deep is the most effective model for datasets that contain high-cardinality features, as opposed to learn embedding and one-hot encoding.","PeriodicalId":178783,"journal":{"name":"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC52330.2021.9640967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

While some data have an explicit, numerical form, many other data, such as gender or nationality, do not typically use numbers and are referred to as categorical data. Thus, machine learning algorithms need a way of representing categorical information numerically in order to be able to analyze them. Our project specifically focuses on optimizing the conversion of categorical features to a numerical form in order to maximize the effectiveness of various machine learning models. From the methods utilized, it has been observed that wide and deep is the most effective model for datasets that contain high-cardinality features, as opposed to learn embedding and one-hot encoding.
机器学习模型中分类和数值特征的优化转换
虽然有些数据有明确的数字形式,但许多其他数据,如性别或国籍,通常不使用数字,被称为分类数据。因此,机器学习算法需要一种以数字方式表示分类信息的方法,以便能够对它们进行分析。我们的项目特别侧重于优化分类特征到数值形式的转换,以最大限度地提高各种机器学习模型的有效性。从所使用的方法中,已经观察到,对于包含高基数特征的数据集,与学习嵌入和单热编码相反,宽和深是最有效的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信