Predicting Eclipse Bug Lifetimes

Lucas D. Panjer
{"title":"Predicting Eclipse Bug Lifetimes","authors":"Lucas D. Panjer","doi":"10.1109/MSR.2007.25","DOIUrl":null,"url":null,"abstract":"In non-trivial software development projects planning and allocation of resources is an important and difficult task. Estimation of work time to fix a bug is commonly used to support this process. This research explores the viability of using data mining tools to predict the time to fix a bug given only the basic information known at the beginning of a bug's lifetime. To address this question, a historical portion of the Eclipse Bugzilla database is used for modeling and predicting bug lifetimes. A bug history transformation process is described and several data mining models are built and tested. Interesting behaviours derived from the models are documented. The models can correctly predict up to 34.9% of the bugs into a discretized log scaled lifetime class.","PeriodicalId":201749,"journal":{"name":"Fourth International Workshop on Mining Software Repositories (MSR'07:ICSE Workshops 2007)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"172","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Workshop on Mining Software Repositories (MSR'07:ICSE Workshops 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSR.2007.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 172

Abstract

In non-trivial software development projects planning and allocation of resources is an important and difficult task. Estimation of work time to fix a bug is commonly used to support this process. This research explores the viability of using data mining tools to predict the time to fix a bug given only the basic information known at the beginning of a bug's lifetime. To address this question, a historical portion of the Eclipse Bugzilla database is used for modeling and predicting bug lifetimes. A bug history transformation process is described and several data mining models are built and tested. Interesting behaviours derived from the models are documented. The models can correctly predict up to 34.9% of the bugs into a discretized log scaled lifetime class.
预测Eclipse Bug的生命周期
在重要的软件开发项目中,资源的规划和分配是一项重要而困难的任务。修复错误的工作时间估计通常用于支持此过程。本研究探讨了使用数据挖掘工具预测修复错误时间的可行性,仅给出了在错误生命周期开始时已知的基本信息。为了解决这个问题,使用Eclipse Bugzilla数据库的历史部分来建模和预测bug的生命周期。描述了错误历史转换过程,建立了几个数据挖掘模型并进行了测试。从模型中得到的有趣行为被记录下来。该模型可以将34.9%的错误正确预测为离散对数缩放的生命周期类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信