Approximation schemes for minimizing average weighted completion time with release dates

F. Afrati, E. Bampis, C. Chekuri, David R Karger, Claire Mathieu, S. Khanna, I. Milis, M. Queyranne, M. Skutella, C. Stein, M. Sviridenko
{"title":"Approximation schemes for minimizing average weighted completion time with release dates","authors":"F. Afrati, E. Bampis, C. Chekuri, David R Karger, Claire Mathieu, S. Khanna, I. Milis, M. Queyranne, M. Skutella, C. Stein, M. Sviridenko","doi":"10.1109/SFFCS.1999.814574","DOIUrl":null,"url":null,"abstract":"We consider the problem of scheduling n jobs with release dates on m machines so as to minimize their average weighted completion time. We present the first known polynomial time approximation schemes for several variants of this problem. Our results include PTASs for the case of identical parallel machines and a constant number of unrelated machines with and without preemption allowed. Our schemes are efficient: for all variants the running time for /spl alpha/(1+/spl epsiv/) approximation is of the form f(1//spl epsiv/, m)poly(n).","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"214","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 214

Abstract

We consider the problem of scheduling n jobs with release dates on m machines so as to minimize their average weighted completion time. We present the first known polynomial time approximation schemes for several variants of this problem. Our results include PTASs for the case of identical parallel machines and a constant number of unrelated machines with and without preemption allowed. Our schemes are efficient: for all variants the running time for /spl alpha/(1+/spl epsiv/) approximation is of the form f(1//spl epsiv/, m)poly(n).
最小化平均加权完成时间与发布日期的近似方案
我们考虑在m台机器上调度n个具有发布日期的作业的问题,以使它们的平均加权完成时间最小。我们提出了已知的第一个多项式时间近似格式,用于这个问题的几个变体。我们的结果包括相同并行机器的pass,以及允许或不允许抢占的不相关机器的常数数量。我们的方案是有效的:对于所有变体,/spl alpha/(1+/spl epsiv/)近似的运行时间形式为f(1//spl epsiv/, m)poly(n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信