Three-dimensional shape modeling with extended hyperquadrics

Tsuneo Saito, M. Ohuchi
{"title":"Three-dimensional shape modeling with extended hyperquadrics","authors":"Tsuneo Saito, M. Ohuchi","doi":"10.1109/IM.2001.924449","DOIUrl":null,"url":null,"abstract":"The shape representation and modeling based on implicit functions have received considerable attention in computer vision literature. In this paper, we propose extended hyperquadrics, as a generalization of hyperquadrics developed by Hanson, for modeling global geometric shapes. The extended hyperquadrics can strengthen the representation power of hyperquadrics, especially for the object with concavities. We discuss the distance measures between extended hyperquadric surfaces and given data set and their minimization to obtain the optimum model parameters. We present several experimental results for fitting extended hyperquadrics to 3D real and synthetic data. We demonstrate that extended hyperquadrics can model more complex shapes than hyperquadrics, maintaining many desirable properties of hyperquadrics.","PeriodicalId":155451,"journal":{"name":"Proceedings Third International Conference on 3-D Digital Imaging and Modeling","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third International Conference on 3-D Digital Imaging and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IM.2001.924449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The shape representation and modeling based on implicit functions have received considerable attention in computer vision literature. In this paper, we propose extended hyperquadrics, as a generalization of hyperquadrics developed by Hanson, for modeling global geometric shapes. The extended hyperquadrics can strengthen the representation power of hyperquadrics, especially for the object with concavities. We discuss the distance measures between extended hyperquadric surfaces and given data set and their minimization to obtain the optimum model parameters. We present several experimental results for fitting extended hyperquadrics to 3D real and synthetic data. We demonstrate that extended hyperquadrics can model more complex shapes than hyperquadrics, maintaining many desirable properties of hyperquadrics.
扩展超二次曲面的三维形状建模
基于隐式函数的形状表示和建模在计算机视觉文献中受到了广泛的关注。在本文中,我们提出了扩展超二次曲面,作为Hanson发展的超二次曲面的推广,用于建模全局几何形状。扩展的超二次曲面可以增强超二次曲面的表示能力,特别是对于带有凹点的物体。我们讨论了扩展超二次曲面与给定数据集之间的距离度量及其最小化,以获得最优模型参数。我们给出了几个将扩展超二次曲面拟合到三维真实数据和合成数据的实验结果。我们证明了扩展超二次曲面可以建模比超二次曲面更复杂的形状,并保持了超二次曲面的许多理想性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信