{"title":"Text-dependent speaker recognition using speaker specific compensation","authors":"S. Laxman, P. S. Sastry","doi":"10.1109/TENCON.2003.1273350","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method for text-dependent speaker recognition. The scheme is based on learning (what we refer to as) speaker-specific compensators for each speaker in the system. The compensator is essentially a speaker to speaker transformation which enables the recognition of the speech of one speaker through a speaker-dependent speech recognition system built for the other. Such a transformation, adequate for our purposes, may be achieved by a simple vector addition in the cepstral domain. This speaker-specific compensator captures the characteristics of the speaker we wish to recognize. For each speaker who is registered into the system, we learn a unique set of compensators. The speaker recognition decision is then based on which compensator achieves best speech recognition scores.","PeriodicalId":405847,"journal":{"name":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2003.1273350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper proposes a new method for text-dependent speaker recognition. The scheme is based on learning (what we refer to as) speaker-specific compensators for each speaker in the system. The compensator is essentially a speaker to speaker transformation which enables the recognition of the speech of one speaker through a speaker-dependent speech recognition system built for the other. Such a transformation, adequate for our purposes, may be achieved by a simple vector addition in the cepstral domain. This speaker-specific compensator captures the characteristics of the speaker we wish to recognize. For each speaker who is registered into the system, we learn a unique set of compensators. The speaker recognition decision is then based on which compensator achieves best speech recognition scores.