Near Optimal Bounds for Collision in Pollard Rho for Discrete Log

J. Kim, R. Montenegro, P. Tetali
{"title":"Near Optimal Bounds for Collision in Pollard Rho for Discrete Log","authors":"J. Kim, R. Montenegro, P. Tetali","doi":"10.1109/FOCS.2007.44","DOIUrl":null,"url":null,"abstract":"We analyze-a fairly standard idealization of Pollard's rho algorithm for finding the discrete logarithm in acyclic group G. It is found that, with high probability, a collision occurs in O(radic( |G|log|G|log log|G|)) steps, not far from the widely conjectured value of Theta(radic|G|). Tins improves upon a recent result of Miller-Venkalesan which showed an upper bound of O(radic|G|log3|G|). Our proof is based on analyzing an appropriate nonreversible, non-lazy random walk on a discrete cycle of (odd) length |G|, and showing that the mixing time of the corresponding walk is O(log|G|log log|G|).","PeriodicalId":197431,"journal":{"name":"48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2007.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

We analyze-a fairly standard idealization of Pollard's rho algorithm for finding the discrete logarithm in acyclic group G. It is found that, with high probability, a collision occurs in O(radic( |G|log|G|log log|G|)) steps, not far from the widely conjectured value of Theta(radic|G|). Tins improves upon a recent result of Miller-Venkalesan which showed an upper bound of O(radic|G|log3|G|). Our proof is based on analyzing an appropriate nonreversible, non-lazy random walk on a discrete cycle of (odd) length |G|, and showing that the mixing time of the corresponding walk is O(log|G|log log|G|).
离散对数波拉德碰撞的近最优界
我们分析了在无环群G中寻找离散对数的Pollard的rho算法的一个相当标准的理想情况。我们发现,在O(radic(|G|log|G|log log|G))步长中有很大的概率发生碰撞,距离广泛推测的Theta(radic|G|)的值不远。Tins改进了Miller-Venkalesan最近的一个结果,该结果显示了O(根|G|log3|G|)的上界。我们的证明是基于对一个(奇数)长度|G|的离散循环上的一个适当的不可逆、非惰性随机漫步的分析,并证明了相应漫步的混合时间为O(log|G|log log|G)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信