Variance-Weighted Estimators to Improve Sensitivity in Online Experiments

Kevin Liou, Sean J. Taylor
{"title":"Variance-Weighted Estimators to Improve Sensitivity in Online Experiments","authors":"Kevin Liou, Sean J. Taylor","doi":"10.1145/3391403.3399542","DOIUrl":null,"url":null,"abstract":"As companies increasingly rely on experiments to make product decisions, precisely measuring changes in key metrics is important. Various methods to increase sensitivity in experiments have been proposed, including methods that use pre-experiment data, machine learning, and more advanced experimental designs. However, prior work has not explored modeling heterogeneity in the variance of individual experimental users. We propose a more sensitive treatment effect estimator that relies on estimating the individual variances of experimental users using pre-experiment data. We show that that weighted estimators using individual-level variance estimates can reduce the variance of treatment effect estimates, and prove that the coefficient of variation of the sample population variance is a sufficient statistic for determining the scale of possible variance reduction. We provide empirical results from case studies at Facebook demonstrating the effectiveness of this approach, where the average experiment achieved a 17% reduction in variance with minimal impact on bias.","PeriodicalId":148025,"journal":{"name":"Proceedings of the 21st ACM Conference on Economics and Computation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3391403.3399542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

As companies increasingly rely on experiments to make product decisions, precisely measuring changes in key metrics is important. Various methods to increase sensitivity in experiments have been proposed, including methods that use pre-experiment data, machine learning, and more advanced experimental designs. However, prior work has not explored modeling heterogeneity in the variance of individual experimental users. We propose a more sensitive treatment effect estimator that relies on estimating the individual variances of experimental users using pre-experiment data. We show that that weighted estimators using individual-level variance estimates can reduce the variance of treatment effect estimates, and prove that the coefficient of variation of the sample population variance is a sufficient statistic for determining the scale of possible variance reduction. We provide empirical results from case studies at Facebook demonstrating the effectiveness of this approach, where the average experiment achieved a 17% reduction in variance with minimal impact on bias.
方差加权估计提高在线实验灵敏度
随着公司越来越依赖实验来做出产品决策,精确测量关键指标的变化非常重要。已经提出了各种提高实验灵敏度的方法,包括使用实验前数据、机器学习和更先进的实验设计的方法。然而,先前的工作尚未探讨个体实验用户方差的建模异质性。我们提出了一个更敏感的治疗效果估计器,它依赖于使用实验前数据估计实验用户的个体方差。我们证明了使用个体水平方差估计的加权估计可以减小处理效果估计的方差,并证明了样本总体方差的变异系数是确定可能的方差减小规模的充分统计量。我们提供了来自Facebook案例研究的实证结果,证明了这种方法的有效性,其中平均实验实现了17%的方差减少,对偏差的影响最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信