Past, present and future of research in relationship marketing - a machine learning perspective

Kallol Das, Yogesh Mungra, Anuj Sharma, Satish Kumar
{"title":"Past, present and future of research in relationship marketing - a machine learning perspective","authors":"Kallol Das, Yogesh Mungra, Anuj Sharma, Satish Kumar","doi":"10.1108/mip-11-2021-0393","DOIUrl":null,"url":null,"abstract":"PurposeThis paper aims to take stock of research done in the domain of relationship marketing (RM). Additionally, this article aims to identify the potential areas of future research.Design/methodology/approachThe authors have used machine learning-based structural topic modelling using R-software to analyse the dataset of 1,905 RM articles published between 1978 and 2020.FindingsStructural topic modeling (STM) analysis led to identifying 14 topics, out of which 7 (viz. customer loyalty, customer relationship management systems, interfirm and network relationships, relationship selling, services and relationship management, consumer brand relationships and relationship marketing research) have shown a rising trend. The study also proposes a taxonomical framework to summarize RM research.Originality/valueThis is the first comprehensive review of RM research spanning over more than four decades. The study’s insights would benefit future scholars of this field to plan/execute their research for greater publication success. Additionally, managers could use the practical implications for achieving better RM outcomes.","PeriodicalId":402197,"journal":{"name":"Marketing Intelligence & Planning","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marketing Intelligence & Planning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/mip-11-2021-0393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

PurposeThis paper aims to take stock of research done in the domain of relationship marketing (RM). Additionally, this article aims to identify the potential areas of future research.Design/methodology/approachThe authors have used machine learning-based structural topic modelling using R-software to analyse the dataset of 1,905 RM articles published between 1978 and 2020.FindingsStructural topic modeling (STM) analysis led to identifying 14 topics, out of which 7 (viz. customer loyalty, customer relationship management systems, interfirm and network relationships, relationship selling, services and relationship management, consumer brand relationships and relationship marketing research) have shown a rising trend. The study also proposes a taxonomical framework to summarize RM research.Originality/valueThis is the first comprehensive review of RM research spanning over more than four decades. The study’s insights would benefit future scholars of this field to plan/execute their research for greater publication success. Additionally, managers could use the practical implications for achieving better RM outcomes.
关系营销研究的过去、现在和未来——一个机器学习的视角
本文旨在对关系营销(RM)领域的研究进行盘点。此外,本文旨在确定未来研究的潜在领域。设计/方法/方法作者使用基于机器学习的结构主题建模,使用r软件分析1978年至2020年间发表的1905篇RM文章的数据集。结构性主题模型(STM)分析确定了14个主题,其中7个主题(即客户忠诚、客户关系管理系统、公司间和网络关系、关系销售、服务和关系管理、消费者品牌关系和关系营销研究)呈现上升趋势。本文还提出了一个分类框架来总结RM的研究。原创性/价值这是对四十多年来RM研究的第一次全面回顾。该研究的见解将有助于该领域的未来学者计划/执行他们的研究,以获得更大的出版成功。此外,管理者可以利用实际意义来实现更好的RM结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信