On the Reliability of Unicyclic Networks with Vertex Failure

Zhanlan Li
{"title":"On the Reliability of Unicyclic Networks with Vertex Failure","authors":"Zhanlan Li","doi":"10.1109/CIS.2010.115","DOIUrl":null,"url":null,"abstract":"For a graph $G$ with perfectly reliable edges and unreliable vertices, we consider the reliability of $G$ for which vertices fail independently of each other with a constant probability $p$. The reliability of graph $G$, denoted by $P_n(G,p)$, is defined to be the probability that the induced sub graphs of surviving vertices connected. Denote by $\\Omega(n,m)$ the family of connected graphs with $n$ vertices and $m$ edges. In this paper, we determine the optimal value of each coefficient of $R_n(G, p)$ and the corresponding graphs for $G\\in \\Omega(n,n+1)$ and $n\\ge 6$. As a byproduct, we give the locally optimal graphs in $\\Omega(n, n + 1)$, for $n \\ge 8$.","PeriodicalId":420515,"journal":{"name":"2010 International Conference on Computational Intelligence and Security","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2010.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph $G$ with perfectly reliable edges and unreliable vertices, we consider the reliability of $G$ for which vertices fail independently of each other with a constant probability $p$. The reliability of graph $G$, denoted by $P_n(G,p)$, is defined to be the probability that the induced sub graphs of surviving vertices connected. Denote by $\Omega(n,m)$ the family of connected graphs with $n$ vertices and $m$ edges. In this paper, we determine the optimal value of each coefficient of $R_n(G, p)$ and the corresponding graphs for $G\in \Omega(n,n+1)$ and $n\ge 6$. As a byproduct, we give the locally optimal graphs in $\Omega(n, n + 1)$, for $n \ge 8$.
具有顶点失效的单环网络的可靠性
对于具有完全可靠边和不可靠顶点的图$G$,我们考虑$G$的可靠性,其中顶点以恒定概率$p$独立地失效。图$G$的可靠度定义为存活顶点的诱导子图连通的概率,用$P_n(G,p)$表示。用$\Omega(n,m)$表示具有$n$个顶点和$m$条边的连通图族。本文确定了$R_n(G, p)$各系数的最优值以及$G\in \Omega(n,n+1)$和$n\ge 6$的对应图。作为副产品,我们在$\Omega(n, n + 1)$中给出了$n \ge 8$的局部最优图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信