Noise constrained hyperspectral data compression

S. T. Rupert, M. Sharp, J. Sweet, E. Cincotta
{"title":"Noise constrained hyperspectral data compression","authors":"S. T. Rupert, M. Sharp, J. Sweet, E. Cincotta","doi":"10.1109/IGARSS.2001.976067","DOIUrl":null,"url":null,"abstract":"Hyperspectral data present significant challenges to downlinking, processing, and exploitation. Adaptive linear unmixing compression algorithms exploit spectral correlation to produce high compression ratios with little to no loss of significant information content. This paper presents an iterative adaptive linear unmixing compression method constrained by the estimated noise statistics of the hypercube. By dynamically optimizing the end-members for each pixel this method minimizes the number of components required to represent the spectrum of any given pixel, yielding a higher compression ratio with less information loss than conventional linear unmixing model approaches. The adaptive approach utilizes spatial connectivity to optimize the end-member selection process and noise statistics to limit data loss. We will demonstrate the effectiveness of this method with AVIRIS and HyMap/sup TM/ hyperspectral datasets.","PeriodicalId":135740,"journal":{"name":"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2001.976067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Hyperspectral data present significant challenges to downlinking, processing, and exploitation. Adaptive linear unmixing compression algorithms exploit spectral correlation to produce high compression ratios with little to no loss of significant information content. This paper presents an iterative adaptive linear unmixing compression method constrained by the estimated noise statistics of the hypercube. By dynamically optimizing the end-members for each pixel this method minimizes the number of components required to represent the spectrum of any given pixel, yielding a higher compression ratio with less information loss than conventional linear unmixing model approaches. The adaptive approach utilizes spatial connectivity to optimize the end-member selection process and noise statistics to limit data loss. We will demonstrate the effectiveness of this method with AVIRIS and HyMap/sup TM/ hyperspectral datasets.
噪声约束的高光谱数据压缩
高光谱数据在下行、处理和利用方面面临着重大挑战。自适应线性解混压缩算法利用频谱相关性产生高压缩比,几乎没有重要信息内容的损失。提出了一种基于超立方体估计噪声统计量约束的迭代自适应线性解混压缩方法。通过动态优化每个像素的端元,该方法最大限度地减少了表示任何给定像素的频谱所需的组件数量,与传统的线性解混模型方法相比,产生更高的压缩比和更少的信息损失。自适应方法利用空间连通性来优化端元选择过程和噪声统计来限制数据丢失。我们将用AVIRIS和HyMap/sup TM/高光谱数据集验证该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信