Cyber Threat Hunting Through the Use of an Isolation Forest

D. Karev, Christopher B. McCubbin, R. Vaulin
{"title":"Cyber Threat Hunting Through the Use of an Isolation Forest","authors":"D. Karev, Christopher B. McCubbin, R. Vaulin","doi":"10.1145/3134302.3134319","DOIUrl":null,"url":null,"abstract":"Most intrusion detection systems use supervised machine learning algorithms which allow them to detect only recorded types of malicious attacks. This paper applies a fundamentally different approach to the problem, exploiting Isolation Forests, an unsupervised machine learning algorithm in a new context. One of the most important advantages of the algorithm is that it can identify and record novel intrusion models. We conduct experiments using HTTP log data to explore the algorithm's accuracy under various conditions. We empirically determine the optimal values for the algorithm's parameters and prove that the originally suggested standard Isolation Forest's parameters do not always produce optimal results. Furthermore, we explore which HTTP features achieve the best results for differentiating between malicious and normal data by running a genetic algorithm. After applying the established results, we achieve approximately 300% increase in the accuracy and we decrease the requested time of the algorithm by nearly 50%.","PeriodicalId":131196,"journal":{"name":"Proceedings of the 18th International Conference on Computer Systems and Technologies","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Conference on Computer Systems and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3134302.3134319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Most intrusion detection systems use supervised machine learning algorithms which allow them to detect only recorded types of malicious attacks. This paper applies a fundamentally different approach to the problem, exploiting Isolation Forests, an unsupervised machine learning algorithm in a new context. One of the most important advantages of the algorithm is that it can identify and record novel intrusion models. We conduct experiments using HTTP log data to explore the algorithm's accuracy under various conditions. We empirically determine the optimal values for the algorithm's parameters and prove that the originally suggested standard Isolation Forest's parameters do not always produce optimal results. Furthermore, we explore which HTTP features achieve the best results for differentiating between malicious and normal data by running a genetic algorithm. After applying the established results, we achieve approximately 300% increase in the accuracy and we decrease the requested time of the algorithm by nearly 50%.
通过使用隔离森林进行网络威胁搜索
大多数入侵检测系统使用监督机器学习算法,允许它们仅检测记录类型的恶意攻击。本文采用了一种完全不同的方法来解决这个问题,利用隔离森林,一种新环境下的无监督机器学习算法。该算法的一个重要优点是能够识别和记录新的入侵模型。我们利用HTTP日志数据进行实验,探索算法在各种条件下的准确性。我们通过经验确定了算法参数的最优值,并证明了最初建议的标准隔离森林参数并不总是产生最优结果。此外,我们还通过运行遗传算法来探索哪些HTTP特征在区分恶意数据和正常数据方面达到了最佳效果。应用已建立的结果后,我们实现了大约300%的精度提高,并将算法的请求时间减少了近50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信