Applications of a poset representation to edge connectivity and graph rigidity

H. Gabow
{"title":"Applications of a poset representation to edge connectivity and graph rigidity","authors":"H. Gabow","doi":"10.1109/SFCS.1991.185453","DOIUrl":null,"url":null,"abstract":"A poset representation for a family of sets defined by a labeling algorithm is investigated. Poset representations are given for the family of minimum cuts of a graph, and it is shown how to compute them quickly. The representations are the starting point for algorithms that increase the edge connectivity of a graph, from lambda to a given target tau = lambda + delta , adding the fewest edges possible. For undirected graphs the time bound is essentially the best-known bound to test tau -edge connectivity; for directed graphs the time bound is roughly a factor delta more. Also constructed are poset representations for the family of rigid subgraphs of a graph, when graphs model structures constructed from rigid bars. The link between these problems is that they all deal with graphic matroids.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

Abstract

A poset representation for a family of sets defined by a labeling algorithm is investigated. Poset representations are given for the family of minimum cuts of a graph, and it is shown how to compute them quickly. The representations are the starting point for algorithms that increase the edge connectivity of a graph, from lambda to a given target tau = lambda + delta , adding the fewest edges possible. For undirected graphs the time bound is essentially the best-known bound to test tau -edge connectivity; for directed graphs the time bound is roughly a factor delta more. Also constructed are poset representations for the family of rigid subgraphs of a graph, when graphs model structures constructed from rigid bars. The link between these problems is that they all deal with graphic matroids.<>
偏置表示在边连通性和图刚性中的应用
研究了由标记算法定义的一组集合的偏序集表示。给出了图的最小割族的偏序集表示,并给出了如何快速计算它们的方法。这些表示是增加图边缘连通性的算法的起点,从lambda到给定目标tau = lambda + delta,添加尽可能少的边。对于无向图,时间边界本质上是检验tau边连通性的最著名的边界;对于有向图,时间范围大致是一个因子。当图对由刚性条构成的结构进行建模时,还构造了图的刚性子图族的偏置表示。这些问题之间的联系是它们都处理图形拟阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信