Deep neural network and its training strategy for converting computer-generated hologram between different display systems

Juhyun Lee, Byoun-gkil Lee
{"title":"Deep neural network and its training strategy for converting computer-generated hologram between different display systems","authors":"Juhyun Lee, Byoun-gkil Lee","doi":"10.1364/dh.2022.w2a.11","DOIUrl":null,"url":null,"abstract":"We propose a deep learning method to convert the given hologram for a display system to a new one for another system. The proposed method can be applied to adapt holograms to any component changes of different systems. In this paper, we set different wavelength of the light source for the original and target display system. Convolutional neural network is designed, and artificial hologram dataset is used for training. Numerically reconstructed images of the converted holograms are shown.","PeriodicalId":227456,"journal":{"name":"Digital Holography and 3-D Imaging 2022","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Holography and 3-D Imaging 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/dh.2022.w2a.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a deep learning method to convert the given hologram for a display system to a new one for another system. The proposed method can be applied to adapt holograms to any component changes of different systems. In this paper, we set different wavelength of the light source for the original and target display system. Convolutional neural network is designed, and artificial hologram dataset is used for training. Numerically reconstructed images of the converted holograms are shown.
计算机生成全息图在不同显示系统之间转换的深度神经网络及其训练策略
我们提出了一种深度学习方法,将显示系统的给定全息图转换为另一个系统的新全息图。该方法可用于使全息图适应不同系统中任何组分的变化。在本文中,我们为原显示系统和目标显示系统设置了不同波长的光源。设计了卷积神经网络,利用人工全息图数据集进行训练。给出了转换后的全息图的数值重建图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信