A New Reward Function for Bayesian Feasibility Determination

J. He, Seong-Hee Kim
{"title":"A New Reward Function for Bayesian Feasibility Determination","authors":"J. He, Seong-Hee Kim","doi":"10.1109/WSC40007.2019.9004875","DOIUrl":null,"url":null,"abstract":"In Bayesian feasibility determination, a typical reward function is either the 0-1 or linear reward function. We propose a new type of reward function for Bayesian feasibility determination. Our proposed reward function emphasizes the importance of barely feasible/infeasible systems whose mean performance measures are close to the threshold. There are two main reasons why the barely feasible/infeasible systems are more important. First, the overall accuracy on solving a feasibility determination problem is heavily affected by those difficult systems. Second, if the decision maker wants to further find the best feasible system, it is likely that one of the barely feasible/infeasible systems is the best feasible. We derive a feasibility determination procedure with the new reward function in a Bayesian framework. Our experiments show that the Bayesian optimal procedure with the new reward function performs the best in making correct decisions on difficult systems when compared to existing procedures.","PeriodicalId":127025,"journal":{"name":"2019 Winter Simulation Conference (WSC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC40007.2019.9004875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In Bayesian feasibility determination, a typical reward function is either the 0-1 or linear reward function. We propose a new type of reward function for Bayesian feasibility determination. Our proposed reward function emphasizes the importance of barely feasible/infeasible systems whose mean performance measures are close to the threshold. There are two main reasons why the barely feasible/infeasible systems are more important. First, the overall accuracy on solving a feasibility determination problem is heavily affected by those difficult systems. Second, if the decision maker wants to further find the best feasible system, it is likely that one of the barely feasible/infeasible systems is the best feasible. We derive a feasibility determination procedure with the new reward function in a Bayesian framework. Our experiments show that the Bayesian optimal procedure with the new reward function performs the best in making correct decisions on difficult systems when compared to existing procedures.
一种新的贝叶斯可行性判定奖励函数
在贝叶斯可行性判定中,典型的奖励函数要么是0-1,要么是线性奖励函数。我们提出了一种用于贝叶斯可行性判定的新型奖励函数。我们提出的奖励函数强调了平均性能指标接近阈值的勉强可行/不可行的系统的重要性。为什么勉强可行/不可行的系统更重要,主要有两个原因。首先,解决可行性确定问题的整体准确性受到这些困难系统的严重影响。其次,如果决策者想进一步找到最佳可行系统,很可能在勉强可行/不可行的系统中有一个是最佳可行的。我们在贝叶斯框架下推导了一个新的奖励函数的可行性确定过程。我们的实验表明,与现有程序相比,具有新奖励函数的贝叶斯最优程序在困难系统中做出正确决策方面表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信