Clément Gaine, D. Aboulkassimi, S. Pontié, J. Nikolovski, J. Dutertre
{"title":"Electromagnetic Fault Injection as a New Forensic Approach for SoCs","authors":"Clément Gaine, D. Aboulkassimi, S. Pontié, J. Nikolovski, J. Dutertre","doi":"10.1109/WIFS49906.2020.9360902","DOIUrl":null,"url":null,"abstract":"Smartphones have a complex hardware and software architecture. Having access to their full memory space can help solve judicial investigations. We propose a new privilege escalation technique in order to access hidden contents and execute sensitive operations. While classical forensic tools mostly exploit software vulnerabilities, it is based on a hardware security evaluation technique. Electromagnetic fault injection is such a technique usually used for microcontrollers or FPGA security characterization. A security function running at 1.2GHz on a 64-bit SoC with a Linux-based OS was successfully attacked. The Linux authentication module uses this function to verify the password correctness by comparing two hash values. Hence, this work constitutes a step towards smartphones privilege escalation through electromagnetic fault injection. This approach is interesting for addressing forensic issues on smartphones.","PeriodicalId":354881,"journal":{"name":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS49906.2020.9360902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Smartphones have a complex hardware and software architecture. Having access to their full memory space can help solve judicial investigations. We propose a new privilege escalation technique in order to access hidden contents and execute sensitive operations. While classical forensic tools mostly exploit software vulnerabilities, it is based on a hardware security evaluation technique. Electromagnetic fault injection is such a technique usually used for microcontrollers or FPGA security characterization. A security function running at 1.2GHz on a 64-bit SoC with a Linux-based OS was successfully attacked. The Linux authentication module uses this function to verify the password correctness by comparing two hash values. Hence, this work constitutes a step towards smartphones privilege escalation through electromagnetic fault injection. This approach is interesting for addressing forensic issues on smartphones.