Distinguishing defined concepts from prerequisite concepts in learning resources

S. Changuel, Nicolas Labroche
{"title":"Distinguishing defined concepts from prerequisite concepts in learning resources","authors":"S. Changuel, Nicolas Labroche","doi":"10.1109/CIDM.2011.5949296","DOIUrl":null,"url":null,"abstract":"The objective of any tutoring system is to provide meaningful learning to the learner, thence it is important to know whether a concept mentioned in a document is a prerequisite for studying that document, or it can be learned from it. In this paper, we study the problem of identifying defined concepts and prerequisite concepts from learning resources available on the web. Statistics and machine learning tools are exploited in order to predict the class of each concept. Two groups of features are constructed to categorise the concepts: contextual features and local features. The contextual features enclose linguistic information and the local features contain the concept properties such as font size and font weigh. An aggregation method is proposed as a solution to the problem of the multiple occurrences of a defined concept in a document. This paper shows that best results are obtained with the SVM classifier than with other classifiers.","PeriodicalId":211565,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2011.5949296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The objective of any tutoring system is to provide meaningful learning to the learner, thence it is important to know whether a concept mentioned in a document is a prerequisite for studying that document, or it can be learned from it. In this paper, we study the problem of identifying defined concepts and prerequisite concepts from learning resources available on the web. Statistics and machine learning tools are exploited in order to predict the class of each concept. Two groups of features are constructed to categorise the concepts: contextual features and local features. The contextual features enclose linguistic information and the local features contain the concept properties such as font size and font weigh. An aggregation method is proposed as a solution to the problem of the multiple occurrences of a defined concept in a document. This paper shows that best results are obtained with the SVM classifier than with other classifiers.
在学习资源中区分已定义概念和先决概念
任何辅导系统的目标都是为学习者提供有意义的学习,因此了解文件中提到的概念是学习该文件的先决条件还是可以从中学习是很重要的。在本文中,我们研究了从网络上可用的学习资源中识别定义概念和前提概念的问题。利用统计和机器学习工具来预测每个概念的类别。构建了两组特征来对概念进行分类:上下文特征和局部特征。上下文特征包含语言信息,局部特征包含概念属性,如字体大小和字体重量。针对一个定义概念在文档中多次出现的问题,提出了一种聚合方法。结果表明,SVM分类器的分类效果优于其他分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信