Lorenzo Peppoloni, Filippo Brizzi, C. Avizzano, E. Ruffaldi
{"title":"Immersive ROS-integrated framework for robot teleoperation","authors":"Lorenzo Peppoloni, Filippo Brizzi, C. Avizzano, E. Ruffaldi","doi":"10.1109/3DUI.2015.7131758","DOIUrl":null,"url":null,"abstract":"The development of natural interfaces for human-robot interaction provides the user an intuitive way to control and guide robots. In this paper, we propose a novel ROS (Robot Operating System)-integrated interface for remote control that allows the user to teleoperate the robot using his hands motion. The user can adjust online the autonomy of the robot between two levels: direct control and waypoint following. The hand tracking and gestures recognition capabilities of the Leap Motion device are exploited to generate the control commands. The user receives a real-time 3D augmented visual feedback using a Kinect sensor and a HMD. To assess the practicability of the system experimental results are presented using as a benchmark the remote control of a Kuka Youbot.","PeriodicalId":131267,"journal":{"name":"2015 IEEE Symposium on 3D User Interfaces (3DUI)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Symposium on 3D User Interfaces (3DUI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DUI.2015.7131758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63
Abstract
The development of natural interfaces for human-robot interaction provides the user an intuitive way to control and guide robots. In this paper, we propose a novel ROS (Robot Operating System)-integrated interface for remote control that allows the user to teleoperate the robot using his hands motion. The user can adjust online the autonomy of the robot between two levels: direct control and waypoint following. The hand tracking and gestures recognition capabilities of the Leap Motion device are exploited to generate the control commands. The user receives a real-time 3D augmented visual feedback using a Kinect sensor and a HMD. To assess the practicability of the system experimental results are presented using as a benchmark the remote control of a Kuka Youbot.