CARE: learning convolutional attentional recurrent embedding for sequential recommendation

Yu-Che Tsai, Cheng-te Li
{"title":"CARE: learning convolutional attentional recurrent embedding for sequential recommendation","authors":"Yu-Che Tsai, Cheng-te Li","doi":"10.1145/3487351.3489478","DOIUrl":null,"url":null,"abstract":"Top-N sequential recommendation is to predict the next few items based on user's sequential interactions with past items. This paper aims at boosting the performance of top-N sequential recommendation based on a state-of-the-art model, Caser. We point out three insufficiencies of Caser - do not model variant-sized sequential patterns, treating the impact of each past time step equally, and cannot learn cumulative features. Then we propose a novel Convolutional Attentional Recurrent Embedding (CARE) learning model. Experiments conducted on a large-scale user-location check-in dataset exhibit promising performance, comparing to Caser.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"184 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3489478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Top-N sequential recommendation is to predict the next few items based on user's sequential interactions with past items. This paper aims at boosting the performance of top-N sequential recommendation based on a state-of-the-art model, Caser. We point out three insufficiencies of Caser - do not model variant-sized sequential patterns, treating the impact of each past time step equally, and cannot learn cumulative features. Then we propose a novel Convolutional Attentional Recurrent Embedding (CARE) learning model. Experiments conducted on a large-scale user-location check-in dataset exhibit promising performance, comparing to Caser.
学习卷积注意递归嵌入序列推荐
Top-N顺序推荐是基于用户与过去项目的顺序交互来预测接下来的几个项目。本文旨在提高基于最先进模型Caser的top-N顺序推荐的性能。我们指出了Caser的三个不足之处——不为变大小的序列模式建模,平等地对待每个过去时间步的影响,不能学习累积特征。然后,我们提出了一种新的卷积注意递归嵌入(CARE)学习模型。与Caser相比,在大规模用户位置签入数据集上进行的实验显示出很好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信