Optimum parameter estimation for non-local means image de-noising using corner information

A. Avanaki, A. Diyanat, S. Sodagari
{"title":"Optimum parameter estimation for non-local means image de-noising using corner information","authors":"A. Avanaki, A. Diyanat, S. Sodagari","doi":"10.1109/ICOSP.2008.4697264","DOIUrl":null,"url":null,"abstract":"Non-local means (a.k.a. NL-means) method for image de-noising averages the similar parts of an image to reduce random noise. The de-noising performance of the algorithm, however, highly depends on the values of its parameters. In this paper, we introduce a method for finding the optimum parameters, present a linear estimation for the h parameter, and demonstrate that the most important parameter in this method is almost independent of the image and depends only on the noise. We also show that the de-noising performance can be increased by using corner information of noisy image. Our modifications result in better de-noising performance at less computational cost.","PeriodicalId":445699,"journal":{"name":"2008 9th International Conference on Signal Processing","volume":"265 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2008.4697264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Non-local means (a.k.a. NL-means) method for image de-noising averages the similar parts of an image to reduce random noise. The de-noising performance of the algorithm, however, highly depends on the values of its parameters. In this paper, we introduce a method for finding the optimum parameters, present a linear estimation for the h parameter, and demonstrate that the most important parameter in this method is almost independent of the image and depends only on the noise. We also show that the de-noising performance can be increased by using corner information of noisy image. Our modifications result in better de-noising performance at less computational cost.
非局部参数的最优估计意味着利用角点信息对图像进行去噪
非局部均值(Non-local means,又称NL-means)图像去噪方法是对图像中相似部分进行平均处理,以降低随机噪声。然而,该算法的去噪性能在很大程度上取决于其参数的取值。本文介绍了一种寻找最优参数的方法,给出了h参数的线性估计,并证明了该方法中最重要的参数几乎与图像无关,只依赖于噪声。结果表明,利用含噪图像的角点信息可以提高去噪性能。我们的改进以更少的计算成本获得了更好的降噪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信