Design, Optimization and Experimental Verification of a Metal Rubber Isolator for Momentum Wheels

Yanhong Ma, Xiangxi Tang, Jie Hong
{"title":"Design, Optimization and Experimental Verification of a Metal Rubber Isolator for Momentum Wheels","authors":"Yanhong Ma, Xiangxi Tang, Jie Hong","doi":"10.1115/gt2021-59940","DOIUrl":null,"url":null,"abstract":"\n The inertial actuator, such as momentum wheels, is the key mechanical component of spacecraft for attitude stability and accuracy maintenance. However, the inertial actuators are under excessive vibration during the rocket launch phase. In order to prevent the inertial actuators from structural damage and equipment failure, isolating vibration from the base must be considered.\n Metal rubber (MR) is a kind of porous functional damping material, manufactured through the process of entangling, stretching, weaving and molding of metallic wires. With its excellent mechanical properties of high damping, designable stiffness and environmental adaptability, MR is widely used in the area of aerospace and aviation for vibration isolation.\n To this end, a method to design and optimize a MR isolator for momentum wheels is developed. The MR isolator consists of a transverse groove spring and MR in parallel. A FEM model coupling the transverse groove spring and the simplified momentum wheel is established to assist in the optimization of the configuration of the spring, and the goal is to minimize the frequency bandwidth of the first six modes. The influence of the parameters on the frequency of the first six modes is also discussed. The MR is then designed to provide damping and additional stiffness. Finally, the performance of the MR isolator is analyzed by simulation and verified through experiments.","PeriodicalId":143309,"journal":{"name":"Volume 9B: Structures and Dynamics — Fatigue, Fracture, and Life Prediction; Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9B: Structures and Dynamics — Fatigue, Fracture, and Life Prediction; Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-59940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The inertial actuator, such as momentum wheels, is the key mechanical component of spacecraft for attitude stability and accuracy maintenance. However, the inertial actuators are under excessive vibration during the rocket launch phase. In order to prevent the inertial actuators from structural damage and equipment failure, isolating vibration from the base must be considered. Metal rubber (MR) is a kind of porous functional damping material, manufactured through the process of entangling, stretching, weaving and molding of metallic wires. With its excellent mechanical properties of high damping, designable stiffness and environmental adaptability, MR is widely used in the area of aerospace and aviation for vibration isolation. To this end, a method to design and optimize a MR isolator for momentum wheels is developed. The MR isolator consists of a transverse groove spring and MR in parallel. A FEM model coupling the transverse groove spring and the simplified momentum wheel is established to assist in the optimization of the configuration of the spring, and the goal is to minimize the frequency bandwidth of the first six modes. The influence of the parameters on the frequency of the first six modes is also discussed. The MR is then designed to provide damping and additional stiffness. Finally, the performance of the MR isolator is analyzed by simulation and verified through experiments.
动量轮金属橡胶隔振器的设计、优化及实验验证
惯性作动器是航天器保持姿态稳定和精度的关键机械部件,如动量轮。然而,在火箭发射阶段,惯性作动器受到过大的振动。为了防止惯性作动器的结构损坏和设备故障,必须考虑与基座隔振。金属橡胶(MR)是一种多孔功能阻尼材料,通过金属丝的缠绕、拉伸、编织、成型等工艺制造而成。磁流变具有高阻尼、可设计刚度和环境适应性等优异的力学性能,广泛应用于航空航天领域的隔振。为此,提出了一种动量轮磁流变隔振器的设计与优化方法。磁流变隔离器由横向槽弹簧和磁流变并联组成。建立了横向沟槽弹簧与简化动量轮耦合的有限元模型,以减小前6种模态的频率带宽为目标,对横向沟槽弹簧的结构进行了优化。讨论了参数对前六个模态频率的影响。然后设计MR来提供阻尼和额外的刚度。最后,通过仿真分析了磁流变隔离器的性能,并进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信