Combining the Transformers and CNNs for Renal Parenchymal Tumors Diagnosis

Shuai Wang, Lian-yu Zhang, Hui-qian Du, Yan Chen, Yao Zheng, Wenbo Mei
{"title":"Combining the Transformers and CNNs for Renal Parenchymal Tumors Diagnosis","authors":"Shuai Wang, Lian-yu Zhang, Hui-qian Du, Yan Chen, Yao Zheng, Wenbo Mei","doi":"10.1109/icbcb55259.2022.9802126","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) can be used to automatically classify the subtypes of renal parenchymal tumors. However, such approaches may overlook the long-range dependencies of features. In this study, we stacked Transformers and CNNs to efficiently capture both long-range dependencies of features and low-level spatial details. The optimal stack layout, the width, and the depth of the networks were determined according to the characteristics of the renal tumors. In addition, we adopted transfer learning for better performance. The experiments conducted on the T2-weighted magnetic resonance (T2W-MR) images from 199 patients presented an 82.9% overall classification accuracy and 0.96 average AUC. The results demonstrate that combining CNN with Transforms is an effective strategy for renal parenchymal tumors diagnosis.","PeriodicalId":429633,"journal":{"name":"2022 10th International Conference on Bioinformatics and Computational Biology (ICBCB)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Conference on Bioinformatics and Computational Biology (ICBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icbcb55259.2022.9802126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional neural networks (CNNs) can be used to automatically classify the subtypes of renal parenchymal tumors. However, such approaches may overlook the long-range dependencies of features. In this study, we stacked Transformers and CNNs to efficiently capture both long-range dependencies of features and low-level spatial details. The optimal stack layout, the width, and the depth of the networks were determined according to the characteristics of the renal tumors. In addition, we adopted transfer learning for better performance. The experiments conducted on the T2-weighted magnetic resonance (T2W-MR) images from 199 patients presented an 82.9% overall classification accuracy and 0.96 average AUC. The results demonstrate that combining CNN with Transforms is an effective strategy for renal parenchymal tumors diagnosis.
变压器与cnn联合诊断肾实质肿瘤
卷积神经网络(Convolutional neural networks, cnn)可用于肾实质肿瘤亚型的自动分类。然而,这种方法可能忽略了特性之间的长期依赖关系。在本研究中,我们将变压器和cnn叠加在一起,以有效地捕获特征的长期依赖关系和低层空间细节。根据肾肿瘤的特点,确定了网络的最佳堆叠布局、宽度和深度。此外,为了获得更好的性能,我们采用了迁移学习。对199例患者的T2W-MR图像进行实验,总体分类准确率为82.9%,平均AUC为0.96。结果表明,CNN与transform相结合是诊断肾实质肿瘤的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信