CPU ray tracing large particle data with balanced P-k-d trees

I. Wald, A. Knoll, Gregory P. Johnson, W. Usher, Valerio Pascucci, M. Papka
{"title":"CPU ray tracing large particle data with balanced P-k-d trees","authors":"I. Wald, A. Knoll, Gregory P. Johnson, W. Usher, Valerio Pascucci, M. Papka","doi":"10.1109/SciVis.2015.7429492","DOIUrl":null,"url":null,"abstract":"We present a novel approach to rendering large particle data sets from molecular dynamics, astrophysics and other sources. We employ a new data structure adapted from the original balanced k-d tree, which allows for representation of data with trivial or no overhead. In the OSPRay visualization framework, we have developed an efficient CPU algorithm for traversing, classifying and ray tracing these data. Our approach is able to render up to billions of particles on a typical workstation, purely on the CPU, without any approximations or level-of-detail techniques, and optionally with attribute-based color mapping, dynamic range query, and advanced lighting models such as ambient occlusion and path tracing.","PeriodicalId":123718,"journal":{"name":"2015 IEEE Scientific Visualization Conference (SciVis)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Scientific Visualization Conference (SciVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SciVis.2015.7429492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

We present a novel approach to rendering large particle data sets from molecular dynamics, astrophysics and other sources. We employ a new data structure adapted from the original balanced k-d tree, which allows for representation of data with trivial or no overhead. In the OSPRay visualization framework, we have developed an efficient CPU algorithm for traversing, classifying and ray tracing these data. Our approach is able to render up to billions of particles on a typical workstation, purely on the CPU, without any approximations or level-of-detail techniques, and optionally with attribute-based color mapping, dynamic range query, and advanced lighting models such as ambient occlusion and path tracing.
平衡P-k-d树的CPU射线追踪大粒子数据
我们提出了一种新的方法来呈现来自分子动力学、天体物理学和其他来源的大粒子数据集。我们采用了一种新的数据结构,它改编自原始的平衡k-d树,它允许以很少或没有开销的方式表示数据。在OSPRay可视化框架中,我们开发了一种高效的CPU算法来遍历、分类和光线跟踪这些数据。我们的方法能够在一个典型的工作站上渲染多达数十亿个粒子,纯粹在CPU上,没有任何近似或细节级技术,并且可以选择基于属性的颜色映射,动态范围查询和高级照明模型,如环境遮挡和路径跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信