No-Reference Stereoscopic Image Quality Assessment Based on Convolutional Neural Network with A Long-Term Feature Fusion

Sumei Li, Mingyi Wang
{"title":"No-Reference Stereoscopic Image Quality Assessment Based on Convolutional Neural Network with A Long-Term Feature Fusion","authors":"Sumei Li, Mingyi Wang","doi":"10.1109/VCIP49819.2020.9301854","DOIUrl":null,"url":null,"abstract":"With the rapid development of three-dimensional (3D) technology, the effective stereoscopic image quality assessment (SIQA) methods are in great demand. Stereoscopic image contains depth information, making it much more challenging in exploring a reliable SIQA model that fits human visual system. In this paper, a no-reference SIQA method is proposed, which better simulates binocular fusion and binocular rivalry. The proposed method applies convolutional neural network to build a dual-channel model and achieve a long-term process of feature extraction, fusion, and processing. What’s more, both high and low frequency information are used effectively. Experimental results demonstrate that the proposed model outperforms the state-of-the-art no-reference SIQA methods and has a promising generalization ability.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With the rapid development of three-dimensional (3D) technology, the effective stereoscopic image quality assessment (SIQA) methods are in great demand. Stereoscopic image contains depth information, making it much more challenging in exploring a reliable SIQA model that fits human visual system. In this paper, a no-reference SIQA method is proposed, which better simulates binocular fusion and binocular rivalry. The proposed method applies convolutional neural network to build a dual-channel model and achieve a long-term process of feature extraction, fusion, and processing. What’s more, both high and low frequency information are used effectively. Experimental results demonstrate that the proposed model outperforms the state-of-the-art no-reference SIQA methods and has a promising generalization ability.
基于长期特征融合卷积神经网络的无参考立体图像质量评价
随着三维技术的飞速发展,对有效的立体图像质量评价方法的需求越来越大。立体图像中包含深度信息,这使得探索适合人类视觉系统的可靠SIQA模型更具挑战性。本文提出了一种模拟双目融合和双目竞争的无参考SIQA方法。该方法利用卷积神经网络构建双通道模型,实现特征提取、融合和处理的长期过程。此外,高频和低频信息都得到了有效的利用。实验结果表明,该模型优于目前最先进的无参考SIQA方法,具有良好的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信