A novel approach for face expressions recognition

S. Banu, G. Danciu, R. Boboc, H. Moga, Cristiana Balany
{"title":"A novel approach for face expressions recognition","authors":"S. Banu, G. Danciu, R. Boboc, H. Moga, Cristiana Balany","doi":"10.1109/SISY.2012.6339580","DOIUrl":null,"url":null,"abstract":"In this paper a new method for face expression recognition is presented. Haar functions are used for face, eyes and mouth detection; edge detection for extracting the eyes correctly, and finally, Bezier curves to approximate the extracted regions. Then, a set of consecrated distances for each face type is extracted, set that will serve as training input for a multilayer neural network. We analyze the input data using a feed-forward neural network, trained and used for determining the class (Angry, Disgust, Fear, Happy, Neutral or Sad) of an arbitrary facial expression.","PeriodicalId":207630,"journal":{"name":"2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2012.6339580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper a new method for face expression recognition is presented. Haar functions are used for face, eyes and mouth detection; edge detection for extracting the eyes correctly, and finally, Bezier curves to approximate the extracted regions. Then, a set of consecrated distances for each face type is extracted, set that will serve as training input for a multilayer neural network. We analyze the input data using a feed-forward neural network, trained and used for determining the class (Angry, Disgust, Fear, Happy, Neutral or Sad) of an arbitrary facial expression.
一种新的面部表情识别方法
本文提出了一种新的人脸表情识别方法。Haar功能用于面部、眼睛和嘴部检测;最后用Bezier曲线逼近提取的区域。然后,为每个人脸类型提取一组指定的距离,作为多层神经网络的训练输入。我们使用前馈神经网络分析输入数据,该网络经过训练并用于确定任意面部表情的类别(愤怒、厌恶、恐惧、快乐、中性或悲伤)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信