Camera-to-Camera Geometry Estimation Requiring no Overlap in their Visual Fields

Ding Yuan, R. Chung
{"title":"Camera-to-Camera Geometry Estimation Requiring no Overlap in their Visual Fields","authors":"Ding Yuan, R. Chung","doi":"10.1109/ICIP.2007.4378933","DOIUrl":null,"url":null,"abstract":"Calibrating the relative geometry between cameras which would move against one another from time to time is an important problem in multi-camera system. Most of the existing calibration technologies are based on the cross-camera feature correspondences. This paper presents a new solution method. The method demands image data captured under a rigid motion of the camera pair, but unlike the existing motion correspondence-based calibration methods, it does not estimate optical flows nor motion correspondences explicitly. Instead it estimates the inter-camera geometry from the observations that are directly available from the two image streams -the monocular normal flows. Experimental results on real image data are shown to illustrate the feasibility of the solution.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4378933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Calibrating the relative geometry between cameras which would move against one another from time to time is an important problem in multi-camera system. Most of the existing calibration technologies are based on the cross-camera feature correspondences. This paper presents a new solution method. The method demands image data captured under a rigid motion of the camera pair, but unlike the existing motion correspondence-based calibration methods, it does not estimate optical flows nor motion correspondences explicitly. Instead it estimates the inter-camera geometry from the observations that are directly available from the two image streams -the monocular normal flows. Experimental results on real image data are shown to illustrate the feasibility of the solution.
相机到相机的几何估计不需要重叠在他们的视野
在多摄像机系统中,摄像机之间的相对几何形状的标定是一个重要的问题。现有的标定技术大多是基于相机间的特征对应。本文提出了一种新的求解方法。该方法要求在相机对的刚性运动下捕获图像数据,但与现有的基于运动对应的校准方法不同,它不明确地估计光流或运动对应。相反,它通过直接从两个图像流(单目正常流)中获得的观测结果来估计相机间的几何形状。在实际图像数据上的实验结果验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信