Nonlinear optimization framework for image-based modeling on programmable graphics hardware

K. Hillesland, Sergey Molinov, R. Grzeszczuk
{"title":"Nonlinear optimization framework for image-based modeling on programmable graphics hardware","authors":"K. Hillesland, Sergey Molinov, R. Grzeszczuk","doi":"10.1145/1201775.882365","DOIUrl":null,"url":null,"abstract":"Graphics hardware is undergoing a change from fixed-function pipelines to more programmable organizations that resemble general purpose stream processors. In this paper, we show that certain general algorithms, not normally associated with computer graphics, can be mapped to such designs. Specifically, we cast nonlinear optimization as a data streaming process that is well matched to modern graphics processors. Our framework is particularly well suited for solving image-based modeling problems since it can be used to represent a large and diverse class of these problems using a common formulation. We successfully apply this approach to two distinct image-based modeling problems: light field mapping approximation and fitting the Lafortune model to spatial bidirectional reflectance distribution functions. Comparing the performance of the graphics hardware implementation to a CPU implementation, we show more than 5-fold improvement.","PeriodicalId":314969,"journal":{"name":"ACM SIGGRAPH 2003 Papers","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2003 Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1201775.882365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Graphics hardware is undergoing a change from fixed-function pipelines to more programmable organizations that resemble general purpose stream processors. In this paper, we show that certain general algorithms, not normally associated with computer graphics, can be mapped to such designs. Specifically, we cast nonlinear optimization as a data streaming process that is well matched to modern graphics processors. Our framework is particularly well suited for solving image-based modeling problems since it can be used to represent a large and diverse class of these problems using a common formulation. We successfully apply this approach to two distinct image-based modeling problems: light field mapping approximation and fitting the Lafortune model to spatial bidirectional reflectance distribution functions. Comparing the performance of the graphics hardware implementation to a CPU implementation, we show more than 5-fold improvement.
可编程图形硬件上基于图像建模的非线性优化框架
图形硬件正在经历从固定功能管道到类似于通用流处理器的更多可编程组织的转变。在本文中,我们证明了某些通常与计算机图形学无关的通用算法可以映射到这样的设计中。具体来说,我们将非线性优化作为与现代图形处理器相匹配的数据流过程。我们的框架特别适合于解决基于图像的建模问题,因为它可以使用一个通用的公式来表示这些问题的一个大而多样的类别。我们成功地将这种方法应用于两个不同的基于图像的建模问题:光场映射近似和将Lafortune模型拟合到空间双向反射分布函数。将图形硬件实现的性能与CPU实现的性能进行比较,我们显示出超过5倍的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信