Xi Xia, Xiaoguang Rui, Xinxin Bai, Haifeng Wang, Feng Jin, Wenjun Yin, Jin Dong, Hsin-ying Lee
{"title":"One-day-ahead load forecast using an adaptive approach","authors":"Xi Xia, Xiaoguang Rui, Xinxin Bai, Haifeng Wang, Feng Jin, Wenjun Yin, Jin Dong, Hsin-ying Lee","doi":"10.1109/SOLI.2014.6960755","DOIUrl":null,"url":null,"abstract":"Electrical load forecasting is vitally important to modern power system planning, operation, and control. In this paper, by focusing on historical load data and calendar factors, we present a hybrid method using period refinement scheme and adaptive strategy for building peak hour period and off-peak hour period models in day-of-week for one-day-ahead for load forecasting. They are evaluated using three full years of Shenzhen city electricity load data. Experimental results shows the adaptive model for each period, confirm good accuracy of the proposed approach to load forecasting and indicate that it has better forecasting accuracy than traditional ANN method.","PeriodicalId":191638,"journal":{"name":"Proceedings of 2014 IEEE International Conference on Service Operations and Logistics, and Informatics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2014 IEEE International Conference on Service Operations and Logistics, and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOLI.2014.6960755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Electrical load forecasting is vitally important to modern power system planning, operation, and control. In this paper, by focusing on historical load data and calendar factors, we present a hybrid method using period refinement scheme and adaptive strategy for building peak hour period and off-peak hour period models in day-of-week for one-day-ahead for load forecasting. They are evaluated using three full years of Shenzhen city electricity load data. Experimental results shows the adaptive model for each period, confirm good accuracy of the proposed approach to load forecasting and indicate that it has better forecasting accuracy than traditional ANN method.