One-day-ahead load forecast using an adaptive approach

Xi Xia, Xiaoguang Rui, Xinxin Bai, Haifeng Wang, Feng Jin, Wenjun Yin, Jin Dong, Hsin-ying Lee
{"title":"One-day-ahead load forecast using an adaptive approach","authors":"Xi Xia, Xiaoguang Rui, Xinxin Bai, Haifeng Wang, Feng Jin, Wenjun Yin, Jin Dong, Hsin-ying Lee","doi":"10.1109/SOLI.2014.6960755","DOIUrl":null,"url":null,"abstract":"Electrical load forecasting is vitally important to modern power system planning, operation, and control. In this paper, by focusing on historical load data and calendar factors, we present a hybrid method using period refinement scheme and adaptive strategy for building peak hour period and off-peak hour period models in day-of-week for one-day-ahead for load forecasting. They are evaluated using three full years of Shenzhen city electricity load data. Experimental results shows the adaptive model for each period, confirm good accuracy of the proposed approach to load forecasting and indicate that it has better forecasting accuracy than traditional ANN method.","PeriodicalId":191638,"journal":{"name":"Proceedings of 2014 IEEE International Conference on Service Operations and Logistics, and Informatics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2014 IEEE International Conference on Service Operations and Logistics, and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOLI.2014.6960755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Electrical load forecasting is vitally important to modern power system planning, operation, and control. In this paper, by focusing on historical load data and calendar factors, we present a hybrid method using period refinement scheme and adaptive strategy for building peak hour period and off-peak hour period models in day-of-week for one-day-ahead for load forecasting. They are evaluated using three full years of Shenzhen city electricity load data. Experimental results shows the adaptive model for each period, confirm good accuracy of the proposed approach to load forecasting and indicate that it has better forecasting accuracy than traditional ANN method.
基于自适应方法的一天负荷预测
电力负荷预测是现代电力系统规划、运行和控制的重要内容。本文从历史负荷数据和日历因素出发,提出了一种基于周期优化方案和自适应策略的混合方法,用于构建工作日的高峰时段和非高峰时段模型,以便提前一天进行负荷预测。它们是用深圳市整整三年的电力负荷数据进行评估的。实验结果表明,该模型对各时段均具有较好的自适应能力,表明该方法具有较好的预测精度,且预测精度优于传统的人工神经网络方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信