Learning-based object abstraction method from simple instructions for human support robot HSR

Kotaro Nagahama, Hiroaki Yaguchi, Hirohito Hattori, Kiyohiro Sogen, Takashi Yamamoto, M. Inaba
{"title":"Learning-based object abstraction method from simple instructions for human support robot HSR","authors":"Kotaro Nagahama, Hiroaki Yaguchi, Hirohito Hattori, Kiyohiro Sogen, Takashi Yamamoto, M. Inaba","doi":"10.1109/AIM.2016.7576812","DOIUrl":null,"url":null,"abstract":"This study proposes the development of a simple remote-controlled daily assistive robot to assist physically challenged individuals. Specifically, we present a method for target object selection using a single click on a graphical user interface. Using this information, the robot can automatically estimate the unknown target object region to plan to grasp and fetch the object. The challenging task is to correctly estimate the region of the object of interest. The proposed system is implemented using the following framework for estimating the region of the object. First, the robot automatically estimates the object region based on user input. Second, the user can intervene by interactively drawing and erasing the estimated region while the system sequentially updates the estimation method based only on the user's correction. The advantage of this system is that only limited inputs are required from the user, a feature that is useful for handicapped users. Moreover, we introduce (1) graph cuts, comprising “HyperPixels” and three-dimensional information, to enable the system to recognize the rich features around the user-specified region for robust segmentation, (2) interactive correction of the automatically estimated object region while the system calculates good graph parameters for the correct estimation, and (3) recall and use of the learned parameters for the estimation based on the database of features around the clicked point.","PeriodicalId":154457,"journal":{"name":"2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIM.2016.7576812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study proposes the development of a simple remote-controlled daily assistive robot to assist physically challenged individuals. Specifically, we present a method for target object selection using a single click on a graphical user interface. Using this information, the robot can automatically estimate the unknown target object region to plan to grasp and fetch the object. The challenging task is to correctly estimate the region of the object of interest. The proposed system is implemented using the following framework for estimating the region of the object. First, the robot automatically estimates the object region based on user input. Second, the user can intervene by interactively drawing and erasing the estimated region while the system sequentially updates the estimation method based only on the user's correction. The advantage of this system is that only limited inputs are required from the user, a feature that is useful for handicapped users. Moreover, we introduce (1) graph cuts, comprising “HyperPixels” and three-dimensional information, to enable the system to recognize the rich features around the user-specified region for robust segmentation, (2) interactive correction of the automatically estimated object region while the system calculates good graph parameters for the correct estimation, and (3) recall and use of the learned parameters for the estimation based on the database of features around the clicked point.
基于简单指令的人类辅助机器人HSR对象抽象方法
本研究提出了一种简单的遥控日常辅助机器人的开发,以帮助残疾人。具体来说,我们提出了一种在图形用户界面上使用一次单击来选择目标对象的方法。利用这些信息,机器人可以自动估计未知的目标物体区域,以便计划抓取和获取目标物体。具有挑战性的任务是正确估计感兴趣对象的区域。该系统使用以下框架来实现对目标区域的估计。首先,机器人根据用户输入自动估计目标区域。其次,用户可以通过交互式绘制和擦除估计区域进行干预,而系统仅根据用户的更正顺序更新估计方法。该系统的优点是只需要用户提供有限的输入,这一特性对残疾用户很有用。此外,我们引入了(1)由“HyperPixels”和三维信息组成的图切割,使系统能够识别用户指定区域周围的丰富特征以进行鲁棒分割;(2)在系统计算良好的图参数以进行正确估计的同时,对自动估计的目标区域进行交互校正;(3)根据点击点周围的特征数据库召回和使用学习到的参数进行估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信