Multisensor Data Fusion with Singular Value Decomposition

S. Koduri
{"title":"Multisensor Data Fusion with Singular Value Decomposition","authors":"S. Koduri","doi":"10.1109/UKSim.2012.65","DOIUrl":null,"url":null,"abstract":"The present study aims at multi-sensor data fusion with Singular Value Decomposition (SVD). Earth observations imaging systems collect data at different spatial and radiometric resolutions due to transmission bandwidth and other technical constraints. Fusion of multi-sensor images enables a synergy of complementary information obtained by sensors of different spectral ranges. The study illustrates the excellent potential of Singular Value Decomposition for image fusion with Quick bird panchromatic and multi spectral data. The study brings out that this fusion process outscores conventional techniques used in operational environments and is illustrated with a second example by merging IRS1C panchromatic data with IRSP6 multi spectral data.","PeriodicalId":405479,"journal":{"name":"2012 UKSim 14th International Conference on Computer Modelling and Simulation","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 UKSim 14th International Conference on Computer Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKSim.2012.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The present study aims at multi-sensor data fusion with Singular Value Decomposition (SVD). Earth observations imaging systems collect data at different spatial and radiometric resolutions due to transmission bandwidth and other technical constraints. Fusion of multi-sensor images enables a synergy of complementary information obtained by sensors of different spectral ranges. The study illustrates the excellent potential of Singular Value Decomposition for image fusion with Quick bird panchromatic and multi spectral data. The study brings out that this fusion process outscores conventional techniques used in operational environments and is illustrated with a second example by merging IRS1C panchromatic data with IRSP6 multi spectral data.
基于奇异值分解的多传感器数据融合
本研究主要针对多传感器数据的奇异值分解(SVD)融合。由于传输带宽和其他技术限制,地球观测成像系统以不同的空间和辐射分辨率收集数据。多传感器图像的融合使不同光谱范围的传感器获得的互补信息协同作用。该研究说明了奇异值分解在快速鸟全色和多光谱图像融合中的良好潜力。该研究表明,该融合过程优于作战环境中使用的传统技术,并通过将IRS1C全色数据与IRSP6多光谱数据合并的第二个例子进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信