High-Frequency Physics-Based Analytical Modeling of Permanent Magnet Synchronous Motor

A. Rahimi, K. Kanzi
{"title":"High-Frequency Physics-Based Analytical Modeling of Permanent Magnet Synchronous Motor","authors":"A. Rahimi, K. Kanzi","doi":"10.1109/PSC49016.2019.9081504","DOIUrl":null,"url":null,"abstract":"In this paper, a physics-based analytical method is proposed in order to model the frequency behavior of laminated iron-core AC motors. The proposed model consists of frequency-dependent lumped circuit parameters representing two parts; Iron core and stator winding. These frequency-dependent components represent the skin effect and proximity effect in conductors and eddy-currents effect in the core. The total parasitic capacitance is considered to be frequency independent and estimated from impedance characteristics. The proposed method can be used in modeling various high-frequency issues such as electromagnetic interference (EMI), common-mode bearing currents, and long cable effects on motor terminals. Equivalent AC resistance and AC inductance of a Permanent Magnet Synchronous Motor (PMSM) calculated with the proposed method is compared with the Finite Element Method (FEM) results and shows a good agreement. Finally, the Impedance characteristic of the PMSM motor calculated using the proposed method is verified by the measurement data.","PeriodicalId":359817,"journal":{"name":"2019 International Power System Conference (PSC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Power System Conference (PSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PSC49016.2019.9081504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a physics-based analytical method is proposed in order to model the frequency behavior of laminated iron-core AC motors. The proposed model consists of frequency-dependent lumped circuit parameters representing two parts; Iron core and stator winding. These frequency-dependent components represent the skin effect and proximity effect in conductors and eddy-currents effect in the core. The total parasitic capacitance is considered to be frequency independent and estimated from impedance characteristics. The proposed method can be used in modeling various high-frequency issues such as electromagnetic interference (EMI), common-mode bearing currents, and long cable effects on motor terminals. Equivalent AC resistance and AC inductance of a Permanent Magnet Synchronous Motor (PMSM) calculated with the proposed method is compared with the Finite Element Method (FEM) results and shows a good agreement. Finally, the Impedance characteristic of the PMSM motor calculated using the proposed method is verified by the measurement data.
基于高频物理的永磁同步电机解析建模
本文提出了一种基于物理的分析方法来模拟层压铁芯交流电动机的频率特性。该模型由两部分组成:频率相关的集总电路参数;铁芯和定子绕组。这些频率相关分量代表导体中的趋肤效应和接近效应以及铁芯中的涡流效应。总寄生电容被认为是频率无关的,并由阻抗特性估计。所提出的方法可用于建模各种高频问题,如电磁干扰(EMI)、共模轴承电流和长电缆对电机端子的影响。用该方法计算的永磁同步电动机的等效交流电阻和交流电感与有限元法计算结果比较,结果吻合较好。最后,通过实测数据验证了该方法计算的永磁同步电机阻抗特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信